Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(4): 4581-4591, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38232351

ABSTRACT

Converting CO2 into energy-rich fuels by using solar energy is a sustainable solution that promotes a carbon-neutral economy and mitigates our reliance on fossil fuels. However, affordable and efficient CO2 conversion remains an ongoing challenge. Here, we introduce polymeric g-C3N4 into the pores of a hollow In2O3 microtube. This architecture results in a compact and staggered arrangement between g-C3N4 and In2O3 components with an increased contact interface for improved charge separation. The hollow interior further contributes to strengthening light absorption. The resulting g-C3N4-In2O3 hollow tubes exhibit superior activity (274 µmol·g-1·h-1) toward CO2 to CO conversion in comparison with those of pure In2O3 and g-C3N4 (5.5 and 93.6 µmol·g-1·h-1, respectively), underlining the role of integrating g-C3N4 and In2O3 in this advanced system. This work offers a strategy for the advanced design and preparation of hollow heterostructures for optimizing CO2 adsorption and conversion by integrating inorganic and organic semiconductors.

2.
Chem Sci ; 14(27): 7512-7523, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37449067

ABSTRACT

The significant role of metal particle geometry in dictating catalytic activity, selectivity, and stability is well established in heterocatalysis. However, this topic is rarely explored in semiconductor-metal hybrid photocatalytic systems, primarily due to the lack of synthetic control over this feature. Herein, we present a new synthetic route for the deposition of metallic Cu nanoparticles with spherical, elliptic, or cubic geometrical shapes, which are selectively grown on one side of the well-established CdSe@CdS nanorod photocatalytic system. An additional multipod morphology in which several nanorod branches are combined on a single Cu domain is presented as well. Cu is an earth-abundant low-cost catalyst known to promote a diverse gallery of organic transformations and is an excellent thermal and electrical conductor with interesting plasmonic properties. Its deposition on cadmium chalcogenide nanostructures is enabled here via mitigation of the reaction kinetics such that the cation exchange reaction is prevented. The structural diversity of these sophisticated nanoscale hybrid systems lays the foundations for shape-activity correlation studies and employment in various applications.

3.
J Chem Phys ; 158(15)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37093989

ABSTRACT

Colloidal nanorods based on CdS or CdSe, functionalized with metal particles, have proven to be efficient catalysts for light-driven hydrogen evolution. Seeded CdSe@CdS nanorods have shown increasing performance with increasing rod length. This observation was rationalized by the increasing lifetime of the separated charges, as a large distance between holes localized in the CdSe seed and electrons localized at the metal tip decreases their recombination rate. However, the impact of nanorod length on the electron-to-tip localization efficiency or pathway remained an open question. Therefore, we investigated the photo-induced electron transfer to the metal in a series of Ni-tipped CdSe@CdS nanorods with varying length. We find that the transfer processes occurring from the region close to the semiconductor-metal interface, the rod region, and the CdSe seed region depend in different ways on the rods' length. The rate of the fastest process from excitonic states generated directly at the interface is independent of the rod length, but the relative amplitude decreases with increasing rod length, as the weight of the interface region is decreasing. The transfer of electrons to the metal tip from excitons generated in the CdS rod region depends strongly on the length of the nanorods, which indicates an electron transport-limited process, i.e., electron diffusion toward the interface region, followed by fast interface crossing. The transfer originating from the CdSe excitonic states again shows no significant length dependence in its time constant, as it is probably limited by the rate of overcoming the shallow confinement in the CdSe seed.

4.
Nano Lett ; 22(24): 9783-9785, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36472889

ABSTRACT

The existence of a reduced Schottky barrier at the nanoscale junction between semiconductor and metal domains has yet to be acknowledged among the photocatalysis community, despite its critical role in dictating the quality and functionality of the hybrid photocatalytic system.


Subject(s)
Semiconductors
5.
Nanomaterials (Basel) ; 12(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36234471

ABSTRACT

Solar-to-hydrogen generation is a promising approach to generate clean and renewable fuel. Nanohybrid structures such as CdSe@CdS-Pt nanorods were found favorable for this task (attaining 100% photon-to-hydrogen production efficiency); yet the rods cannot support overall water splitting. The key limitation seems to be the rate of hole extraction from the semiconductor, jeopardizing both activity and stability. It is suggested that hole extraction might be improved via tuning the rod's dimensions, specifically the width of the CdS shell around the CdSe seed in which the holes reside. In this contribution, we successfully attain atomic-scale control over the width of CdSe@CdS nanorods, which enables us to verify this hypothesis and explore the intricate influence of shell diameter over hole quenching and photocatalytic activity towards H2 production. A non-monotonic effect of the rod's diameter is revealed, and the underlying mechanism for this observation is discussed, alongside implications towards the future design of nanoscale photocatalysts.

6.
ChemSusChem ; 15(17): e202201525, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36000785

ABSTRACT

Invited for this month's cover is the group of Lilac Amirav at Technion-Israel Institute of Technology. The image shows the sustainable solar-driven photocatalytic generation of hydrogen from water using a molecular metallocorrole-nanorod photocatalytic system. The Research Article itself is available at 10.1002/cssc.202200804.


Subject(s)
Nanotubes , Hydrogen , Sunlight
7.
Nanomaterials (Basel) ; 12(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35893495

ABSTRACT

CuZnO/Al2O3 is the industrial catalyst used for methanol synthesis from syngas (CO + H2) and is also promising for the hydrogenation of CO2 to methanol. In this work, we synthesized Al2O3 nanorods (n-Al2O3) and impregnated them with the CuZnO component. The catalysts were evaluated for the hydrogenation of CO2 to methanol in a fixed-bed reactor. The support and the catalysts were characterized, including via in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The study of the CO2 adsorption, activation, and hydrogenation using in situ DRIFT spectroscopy revealed the different roles of the catalyst components. CO2 mainly adsorbed on the n-Al2O3 support, forming carbonate species. Cu was found to facilitate H2 dissociation and further reacted with the adsorbed carbonates on the n-Al2O3 support, transforming them to formate or additional intermediates. Like the n-Al2O3 support, the ZnO component contributed to improving the CO2 adsorption, facilitating the formation of more carbonate species on the catalyst surface and enhancing the efficiency of the CO2 activation and hydrogenation into methanol. The synergistic interaction between Cu and ZnO was found to be essential to increase the space-time yield (STY) of methanol but not to improve the selectivity. The 3% CuZnO/n-Al2O3 displayed improved catalytic performance compared to 3% Cu/n-Al2O3, reaching a CO2 conversion rate of 19.8% and methanol STY rate of 1.31 mmolgcat-1h-1 at 300 °C. This study provides fundamental and new insights into the distinctive roles of the different components of commercial methanol synthesis catalysts.

8.
ChemSusChem ; 15(17): e202200804, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-35789067

ABSTRACT

Solar-driven photocatalytic generation of hydrogen from water is a potential source of clean and renewable fuel. Yet systems that are sufficiently stable and efficient for practical use have not been realized. Here, nanorod photocatalysts that have proven record activity for the water reduction half reaction were successfully combined with molecular metallocorroles suitable for catalyzing the accompanying oxidation reactions. Utilization of OH- /⋅OH redox species as charge transfer shuttle between freely mixed metallocorroles and rods resulted in quantum efficiency that peaked as high as 17 % for hydrogen production from water in the absence of sacrificial hole scavengers. While typically each sacrificial scavenger is able to extract but a single hole, here the molecular metallocorrole catalysts were found to successfully handle nearly 300,000 holes during their lifespan. The implications of the new system on the prospects of realizing practical overall water splitting and direct solar-to-fuel energy conversion were discussed.


Subject(s)
Nanotubes , Solar Energy , Hydrogen , Photochemical Processes , Water
9.
ACS Appl Mater Interfaces ; 14(18): 21340-21347, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35467354

ABSTRACT

Graphitic carbon nitride (g-C3N4) is a promising conjugated polymer with visible light responsiveness and numerous intriguing characteristics that make it highly beneficial for a myriad of potential applications. A novel design and universal approach for the fabrication of unique plasmonic g-C3N4 nanoscale hybrids, with well-controlled morphology, is presented. A single gold nanoprism is encapsulated within dense or hollow g-C3N4 spheres for the formation of Au@g-C3N4 core-shell and Au@g-C3N4 yolk-shell nanohybrids. Au nanoprisms were chosen duo to the strong (visible range) plasmon resonances and electromagnetic field hotspots formed at their sharp corners. The incorporation of Au nanoprisms into the g-C3N4 nanospheres results in a dramatic ∼threefold rise in the emission of plasmonic g-C3N4 yolk-shell nanohybrids and ∼3.6-fold enhancement of the photocurrent density obtained from the plasmonic g-C3N4 core-shell nanohybrids, when compared with the g-C3N4 hollow nanospheres. Hence, these hybrids can potentially benefit applications in the areas spanning from solar energy harvesting to biomedical imaging and theranostics.

10.
Angew Chem Int Ed Engl ; 60(35): 19413-19418, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34133052

ABSTRACT

The study of nanocrystal self-assembly into superlattices or superstructures is of great significance in nanoscience. Carbon nitride quantum dots (CNQDs), being a promising new group of nanomaterials, however, have hardly been explored in their self-organizing behavior. Here we report of a unique irradiation-triggered self-assembly and recrystallization phenomenon of crystalline CNQDs (c-CNQDs) terminated by abundant oxygen-containing groups. Unlike the conventional self-assembly of nanocrystals into ordered superstructures, the photoinduced self-assembly of c-CNQDs resembles a "click reaction" process of macromolecules, in which the activated -OH and -NH2 functional groups along the perimeters initiate cross-linking of adjacent QDs through a photocatalytic effect. Our findings unveil fundamental physiochemical features of CNQDs and open up new possibilities of manipulating carbon nitride nanomaterials via controlled assembly. Prospects for potential applications are discussed as well.

11.
ChemSusChem ; 13(18): 4894-4899, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32809266

ABSTRACT

Solar-to-chemical (STC) energy conversion is the fundamental process that nurtures Earth's ecosystem, fixing the inexhaustible solar resource into chemical bonds. Photochemical synthesis endows plants with the primary substances for their development; likewise, an artificial mimic of natural systems has long sought to support human civilization in a sustainable way. Intensive efforts have demonstrated light-triggered production of different solar fuels, such as H2 , CO, CH4 and NH3 , while research on oxidative half-reactions has built up from O2 generation to organic synthesis, waste degradation and photo-reforming. Nevertheless, while extensive utilization of the radiant chemical potential to promote a manifold of endergonic processes is the common thread of such research, exploration of the chemical space is fragmented by the lack of a common language across different scientific disciplines. Focusing on colloidal semiconductor materials, this Viewpoint discusses an inclusive protocol for the discovery and assessment of STC redox reactions, aiming to establish photon-to-molecule conversion as the ultimate paradigm beyond fossil energy exploitation.

12.
Front Neurosci ; 13: 12, 2019.
Article in English | MEDLINE | ID: mdl-30778281

ABSTRACT

The development of imaging methodologies for single cell measurements over extended timescales of up to weeks, in the intact animal, will depend on signal strength, stability, validity and specificity of labeling. Whereas light-microscopy can achieve these with genetically-encoded probes or dyes, this modality does not allow mesoscale imaging of entire intact tissues. Non-invasive imaging techniques, such as magnetic resonance imaging (MRI), outperform light microscopy in field of view and depth of imaging, but do not offer cellular resolution and specificity, suffer from low signal-to-noise ratio and, in some instances, low temporal resolution. In addition, the origins of the signals measured by MRI are either indirect to the process of interest or hard to validate. It is therefore highly warranted to find means to enhance MRI signals to allow increases in resolution and cellular-specificity. To this end, cell-selective bi-functional magneto-fluorescent contrast agents can provide an elegant solution. Fluorescence provides means for identification of labeled cells and particles location after MRI acquisition, and it can be used to facilitate the design of cell-selective labeling of defined targets. Here we briefly review recent available designs of magneto-fluorescent markers and elaborate on key differences between them with respect to durability and relevant cellular highlighting approaches. We further focus on the potential of intracellular labeling and basic functional sensing MRI, with assays that enable imaging cells at microscopic and mesoscopic scales. Finally, we illustrate the qualities and limitations of the available imaging markers and discuss prospects for in vivo neural imaging and large-scale brain mapping.

13.
Nano Lett ; 18(7): 4370-4376, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29932665

ABSTRACT

Conversion of solar energy into liquid fuel often relies on multielectron redox processes that include highly reactive intermediates, with back reaction routes that hinder the overall efficiency of the process. Here, we reveal that these undesirable reaction pathways can be minimized, rendering the photocatalytic reactions more efficient, when charge carriers are harvested from a multiexcitonic state of a semiconductor photocatalyst. A plasmonic antenna, comprising Au nanoprisms, was employed to accomplish feasible levels of multiple carrier excitations in semiconductor nanocrystal-based photocatalytic systems (CdSe@CdS core-shell quantum dots and CdSe@CdS seeded nanorods). The antenna's near-field amplifies the otherwise inherently weak biexciton generation in the semiconductor. The two-electron photoreduction of Pt and Pd metal precursors served as model reactions. In the presence of the plasmonic antenna, these photocatalyzed two-electron reactions exhibited enhanced yields and kinetics. This work uniquely relies on a nonlinear enhancement that has potential for large amplification of photocatalytic activity in the presence of a plasmonic near-field.

14.
Nano Lett ; 18(1): 357-364, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29236508

ABSTRACT

Hybrid semiconductor-metallic nanostructures play an important role in a wide range of applications and are key components in photocatalysis. Here we reveal that the nature of a nanojunction formed between a semiconductor nanorod and metal nanoparticle is sensitive to the size of the metal component. This is reflected in the activity toward hydrogen production, emission quantum yields, and the efficiency of charge separation which is determined by transient absorption spectroscopy. A set of Ni decorated CdSe@CdS nanorods with different tip size were examined, and an optimal metal domain size of 5.2 nm was obtained. Remarkably, charge separation time constants were found to be nonvariant with metal tip size. It is proposed that electron transfer mechanism encompasses two consecutive but separate processes: slow charge migration along the rod toward the interface, followed by fast interface crossing of the electron from the semiconductor into the metal phase. The first migration step dominates the time constant for the charge separation process and is not affected by the metal size. The efficiency of charge separation on the other hand was found to be sensitive to metal size. It is suggested that Coulomb blockade charging energy and a size-dependent Schottky barrier contribute to the metal size effect on charge transfer probability across the semiconductor-metal nanojunction. These two opposing trends result in an optimal metal size domain for the cocatalyst. This work is expected to benefit a broad range of applications utilizing semiconductor-metal nanocomposites.

15.
J Vis Exp ; (108): e53675, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26891234

ABSTRACT

We demonstrate a procedure for the photochemical oxidative growth of iridium oxide catalysts on the surface of seeded cadmium selenide-cadmium sulfide (CdSe@CdS) nanorod photocatalysts. Seeded rods are grown using a colloidal hot-injection method and then moved to an aqueous medium by ligand exchange. CdSe@CdS nanorods, an iridium precursor and other salts are mixed and illuminated. The deposition process is initiated by absorption of photons by the semiconductor particle, which results with formation of charge carriers that are used to promote redox reactions. To insure photochemical oxidative growth we used an electron scavenger. The photogenerated holes oxidize the iridium precursor, apparently in a mediated oxidative pathway. This results in the growth of high quality crystalline iridium oxide particles, ranging from 0.5 nm to about 3 nm, along the surface of the rod. Iridium oxide grown on CdSe@CdS heterostructures was studied by a variety of characterization methods, in order to evaluate its characteristics and quality. We explored means for control over particle size, crystallinity, deposition location on the CdS rod, and composition. Illumination time and excitation wavelength were found to be key parameters for such control. The influence of different growth conditions and the characterization of these heterostructures are described alongside a detailed description of their synthesis. Of significance is the fact that the addition of iridium oxide afforded the rods astounding photochemical stability under prolonged illumination in pure water (alleviating the requirement for hole scavengers).


Subject(s)
Iridium/chemistry , Nanoparticles/chemistry , Nanotubes/chemistry , Cadmium Compounds , Oxidation-Reduction , Particle Size , Selenium Compounds , Semiconductors , Sulfides/chemistry
16.
Nano Lett ; 16(3): 1776-81, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26788824

ABSTRACT

We report a record 100% photon-to-hydrogen production efficiency, under visible light illumination, for the photocatalytic water-splitting reduction half-reaction. This result was accomplished by utilization of nanoparticle-based photocatalysts, composed of Pt-tipped CdSe@CdS rods, with a hydroxyl anion-radical redox couple operating as a shuttle to relay the holes. The implications of such record efficiency for the prospects of realizing practical over all water splitting and solar-to-fuel energy conversion are discussed.

17.
J Phys Chem Lett ; 6(12): 2265-8, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26266602

ABSTRACT

We provide evidence that for a multielectron reaction such as hydrogen reduction, the photocatalyst design should include only a single cocatalytic site per each segment of the semiconductor capable of light excitation. This is to ensure that intermediates are formed at close proximity. These findings are demonstrated by evaluating the efficiency for hydrogen production over a nanoparticle-based photocatalyst consisting of Pt-decorated CdSe@CdS rods. Rods decorated with a single Pt catalyst were found to be the most active for hydrogen production, with QE of 27%, while rods having two reduction sites reached QE of only 18% and rods with multiple sites showed very low activity. The advantage of using a single catalytic site became negligible when the rods were employed in catalyzing a single electron reaction. We believe the implications of this finding are of significance for the proper design of photocatalysts aimed at solar-to-fuel energy conversion.

18.
Angew Chem Int Ed Engl ; 54(24): 7007-11, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-25924726

ABSTRACT

Reported is the design and modular synthesis of a dual metal-dual semiconductor heterostructure with control over the dimensions and placement of its individual components. Analogous to molecular synthesis, colloidal synthesis is now evolving into a series of sequential synthetic procedures with separately optimized steps. We detail the challenges and parameters that must be considered when assembling such a multicomponent nanoparticle, and their solutions. This multicomponent nanosystem, Ru-CdSe@CdS-Pt, was designed to achieve charge carrier separation and directional transfer across different interfaces toward two separate redox catalysts. This heterostructure may potentially serve as a nanometric closed circuit photoelectrochemical cell.

19.
J Phys Chem Lett ; 6(18): 3760-4, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26722753

ABSTRACT

The enhanced catalytic properties of bimetallic particles has made them the focus of extensive research. We compare the photocatalytic activity for hydrogen production of core-shell structures of Au@Pd and Au@(Au/Pd alloy) on seeded rods of CdSe@CdS and show that Au@alloy was superior toward hydrogen production. Our finding reveals that the promotion effects of Au in Pd originate both from the alteration of the electronic structure by the Au core as well as by the atomic rearrangement of the surface. Long-term monitoring of the activity of the photocatalysts offered insights into the dynamic processes during the illumination showing that the tip morphology influenced the stability of the hybrid structures. The Au core served as a physical barrier, protecting the CdS rod against cation exchange reactions with the Pd. The coupling of these factors to achieve synergistic effects is therefore a prime aspect in the rational design of efficient cocatalysts.

20.
Chemphyschem ; 16(2): 353-9, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25430787

ABSTRACT

A spray-based technique, originally developed for the production of semiconductor nanocrystals, is utilized for the preparation of high-quality nanocrystalline thin films, as demonstrated with manganese sulfide. The films are formed by the use of pneumatic-assisted thermospray or pneumatic nebulizers. Our simple, low-cost, and low-temperature process results in a dense and phase-pure grain structure. The concepts and benefits of this technique are described and discussed. The film characteristics show dependence on the experimental parameters, in particular the rate of solvent vaporization. Three alternative film formation mechanisms are suggested for cases with varied experimental conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...