Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Anim Health Prod ; 56(4): 150, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691202

ABSTRACT

Understanding how evolutionary factors related to climate adaptation and human selection have influenced the genetic architecture of domesticated animals is of great interest in biology. In the current study, by using 304 whole genomes from different geographical regions (including Europe, north Africa, Southwest Asia, east Asia, west Africa, south Asia, east Africa, Australia and Turkey), We evaluate global sheep population dynamics in terms of genetic variation and population structure. We further conducted comparative population analysis to study the genetic underpinnings of climate adaption to local environments and also morphological traits. In order to identify genomic signals under selection, we applied fixation index (FST) and also nucleotide diversity (θπ) statistical measurements. Our results revealed several candidate genes on different chromosomes under selection for local climate adaptation (e.g. HOXC12, HOXC13, IRF1, FGD2 and GNAQ), body size (PDGFA, HMGA2, PDE3A) and also morphological related traits (RXFP2). The discovered candidate genes may offer newel insights into genetic underpinning of regional adaptation and commercially significant features in local sheep.


Subject(s)
Sheep, Domestic , Animals , Sheep, Domestic/genetics , Sheep, Domestic/physiology , Genetic Variation , High-Throughput Nucleotide Sequencing/veterinary , Adaptation, Physiological/genetics , Sequence Analysis, DNA , Selection, Genetic , Sheep/genetics
2.
BMC Genomics ; 25(1): 477, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745140

ABSTRACT

BACKGROUND: Since domestication, both evolutionary forces and human selection have played crucial roles in producing adaptive and economic traits, resulting in animal breeds that have been selected for specific climates and different breeding goals. Pakistani goat breeds have acquired genomic adaptations to their native climate conditions, such as tropical and hot climates. In this study, using next-generation sequencing data, we aimed to assess the signatures of positive selection in three native Pakistani goats, known as milk production breeds, that have been well adapted to their local climate. RESULTS: To explore the genomic relationship between studied goat populations and their population structure, whole genome sequence data from native goat populations in Pakistan (n = 26) was merged with available worldwide goat genomic data (n = 184), resulting in a total dataset of 210 individuals. The results showed a high genetic correlation between Pakistani goats and samples from North-East Asia. Across all populations analyzed, a higher linkage disequilibrium (LD) level (- 0.59) was found in the Pakistani goat group at a genomic distance of 1 Kb. Our findings from admixture analysis (K = 5 and K = 6) showed no evidence of shared genomic ancestry between Pakistani goats and other goat populations from Asia. The results from genomic selection analysis revealed several candidate genes related to adaptation to tropical/hot climates (such as; KITLG, HSPB9, HSP70, HSPA12B, and HSPA12B) and milk production related-traits (such as IGFBP3, LPL, LEPR, TSHR, and ACACA) in Pakistani native goat breeds. CONCLUSIONS: The results from this study shed light on the structural variation in the DNA of the three native Pakistani goat breeds. Several candidate genes were discovered for adaptation to tropical/hot climates, immune responses, and milk production traits. The identified genes could be exploited in goat breeding programs to select efficient breeds for tropical/hot climate regions.


Subject(s)
Genomics , Goats , Linkage Disequilibrium , Milk , Tropical Climate , Animals , Goats/genetics , Milk/metabolism , Genomics/methods , Adaptation, Physiological/genetics , Selection, Genetic , Polymorphism, Single Nucleotide , Pakistan , Phenotype , Breeding
3.
Sci Rep ; 13(1): 8722, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253766

ABSTRACT

During the process of animal domestication, both natural and artificial selection cause variation in allele frequencies among populations. Identifying genomic areas of selection in domestic animals may aid in the detection of genomic areas linked to ecological and economic traits. We studied genomic variation in 140 worldwide goat individuals, including 75 Asian, 30 African and 35 European goats. We further carried out comparative population genomics to detect genomic regions under selection for adaptability to harsh conditions in local Asian ecotypes and also milk production traits in European commercial breeds. In addition, we estimated the genetic distances among 140 goat individuals. The results showed that among all studied goat groups, local breeds from West and South Asia emerged as an independent group. Our search for selection signatures in local goats from West and South Asia revealed candidate genes related to adaptation to hot climate (HSPB6, HSF4, VPS13A and NBEA genes) and immune response (IL7, IL5, IL23A and LRFN5) traits. Furthermore, selection signatures in European commercial goats involved several milk production related genes, such as VPS13C, NCAM2, TMPRSS15, CSN3 and ABCG2. The identified candidate genes could be the fundamental genetic resource for enhancement of goat production and environmental-adaptive traits, and as such they should be used in goat breeding programs to select more efficient breeds.


Subject(s)
Goats , Selection, Genetic , Animals , Goats/genetics , Milk , Polymorphism, Single Nucleotide , Genomics
4.
BMC Vet Res ; 17(1): 369, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34861880

ABSTRACT

BACKGROUND: Sheep were among the first animals to be domesticated. They are raised all over the world and produce a major scale of animal-based protein for human consumption and play an important role in agricultural economy. Iran is one of the important locations for sheep genetic resources in the world. Here, we compared the Illumina Ovine SNP50 BeadChip data of three Iranian local breeds (Moghani, Afshari and Gezel), as a population that does not undergone artificial breeding programs as yet, and five other sheep breeds namely East Friesian white, East Friesian brown, Lacaune, DorsetHorn and Texel to detect genetic mechanisms underlying economical traits and daptation to harsh environments in sheep. RESULTS: To identify genomic regions that have been targeted by positive selection, we used fixation index (Fst) and nucleotide diversity (Pi) statistics. Further analysis indicated candidate genes involved in different important traits such as; wool production included crimp of wool (PTPN3, NBEA and KRTAP20-2 genes), fiber diameter (PIK3R4 gene), hair follicle development (LHX2 gene), the growth and development of fiber (COL17A1 gene)), adaptation to hot arid environments (CORIN gene), adaptive in deficit water status (CPQ gene), heat stress (PLCB4, FAM107B, NBEA, PIK3C2B and USP43 genes) in sheep. CONCLUSIONS: We detected several candidate genes related to wool production traits and adaptation to hot arid environments in sheep that can be applicable for inbreeding goals. Our findings not only include the results of previous researches, but also identify a number of novel candidate genes related to studied traits. However, more works will be essential to acknowledge phenotype- genotype relationships of the identified genes in our study.


Subject(s)
Genomics , High-Throughput Nucleotide Sequencing , Sheep, Domestic/genetics , Animals , Breeding , High-Throughput Nucleotide Sequencing/veterinary , Iran , Phenotype
5.
BMC Res Notes ; 13(1): 436, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32938490

ABSTRACT

OBJECTIVE: The data provided herein represent the whole-genome resequencing data related to three wolves and three Iranian local dogs. The understanding of genome evolution during animal domestication is an interesting subject in genome biology. Dog is an excellent model for understanding of domestication due to its considerable variety of behavioral and physical traits. The Zagros area of current day Iran has been identified as one of the initial centers of animal domestication. The availability of the complete genome sequences of Iranian local canids can be a valuable resource for researchers to address questions and testing hypotheses on the dog domestication process. DATA DESCRIPTION: We collected blood samples from six Iranian local canids including two hunting dogs (Saluki breed), a mastiff dog (Qahderijani ecotype) and three wolves. We extracted genomic DNA from blood samples. Sequence data were produced using the Illumina HiSeq 2500 system. All sequence data are available in the National Genomics Data Center (NGDC), Genome Sequence Archive (GSA) database under the accession of CRA001324 and the National Center for Biotechnology Information (NCBI) under the accession of PRJNA639312. The short-read sequences with the mean depth of 16X were aligned to the dog reference genome (CanFam3.1) and achieved 99% coverage of the reference assembly. The obtained information from this experiment will be useful in evolutionary biology.


Subject(s)
Wolves , Animals , Dogs , Genome , Genomics , High-Throughput Nucleotide Sequencing , Iran , Wolves/genetics
6.
BMC Genomics ; 21(1): 207, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32131720

ABSTRACT

BACKGROUND: Advances in genome technology have simplified a new comprehension of the genetic and historical processes crucial to rapid phenotypic evolution under domestication. To get new insight into the genetic basis of the dog domestication process, we conducted whole-genome sequence analysis of three wolves and three dogs from Iran which covers the eastern part of the Fertile Crescent located in Southwest Asia where the independent domestication of most of the plants and animals has been documented and also high haplotype sharing between wolves and dog breeds has been reported. RESULTS: Higher diversity was found within the wolf genome compared with the dog genome. A total number of 12.45 million SNPs were detected in all individuals (10.45 and 7.82 million SNPs were identified for all the studied wolves and dogs, respectively) and a total number of 3.49 million small Indels were detected in all individuals (3.11 and 2.24 million small Indels were identified for all the studied wolves and dogs, respectively). A total of 10,571 copy number variation regions (CNVRs) were detected across the 6 individual genomes, covering 154.65 Mb, or 6.41%, of the reference genome (canFam3.1). Further analysis showed that the distribution of deleterious variants in the dog genome is higher than the wolf genome. Also, genomic annotation results from intron and intergenic regions showed that the proportion of variations in the wolf genome is higher than that in the dog genome, while the proportion of the coding sequences and 3'-UTR in the dog genome is higher than that in the wolf genome. The genes related to the olfactory and immune systems were enriched in the set of the structural variants (SVs) identified in this work. CONCLUSIONS: Our results showed more deleterious mutations and coding sequence variants in the domestic dog genome than those in wolf genome. By providing the first Iranian dog and wolf variome map, our findings contribute to understanding the genetic architecture of the dog domestication.


Subject(s)
Dogs/genetics , Pets/genetics , Whole Genome Sequencing/veterinary , Wolves/genetics , Animals , Breeding , DNA Copy Number Variations , Domestication , High-Throughput Nucleotide Sequencing/veterinary , Iran , Phylogeny , Polymorphism, Single Nucleotide , Sequence Deletion
7.
Reprod Domest Anim ; 54(2): 358-364, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30359467

ABSTRACT

Ovulation rate and prolificacy are the most important reproductive traits that have major impact on the efficiency of lamb meat production. Here, we compared the whole genomes of the Romanov sheep, known as one of the high prolific breeds, and four other sheep breeds namely Assaf, Awassi, Cambridge and British du cher, to identify genetic mechanisms underlying prolificacy in sheep. Selection signature analysis revealed 637 and 477 protein-coding genes under positive selection from FST and nucleotide diversity (Pi) statistics, respectively. Further analysis showed that several candidate genes including LEPR, PDGFRL and KLF5 genes are involved in sheep prolificacy. The identified candidate genes in the selected regions are novel and provide new insights into the genetic mechanisms underlying prolificacy in sheep and can be useful in sheep breeding programmes to develop improved breeds for high reproductive efficiency.


Subject(s)
Fertility/genetics , Ovulation/genetics , Selection, Genetic , Sheep, Domestic/genetics , Whole Genome Sequencing/veterinary , Animals , Female , Genome , Kruppel-Like Transcription Factors/genetics , Receptors, Leptin/genetics , Receptors, Platelet-Derived Growth Factor/genetics
8.
Mitochondrial DNA A DNA Mapp Seq Anal ; 29(3): 394-402, 2018 04.
Article in English | MEDLINE | ID: mdl-28303732

ABSTRACT

The dog mtDNA diversity picture from wide geographical sampling but from a small number of individuals per region or breed, displayed little geographical correlation and high degree of haplotype sharing between very distant breeds. For a clear picture, we extensively surveyed Iranian native dogs (n = 305) in comparison with published European (n = 443) and Southwest Asian (n = 195) dogs. Twelve haplotypes related to haplogroups A, B and C were shared by Iranian, European, Southwest Asian and East Asian dogs. In Iran, haplotype and nucleotide diversities were highest in east, southeast and northwest populations while western population had the least. Sarabi and Saluki dog populations can be assigned into haplogroups A, B, C and D; Qahderijani and Kurdi to haplogroups A, B and C, Torkaman to haplogroups A, B and D while Sangsari and Fendo into haplogroups A and B, respectively. Evaluation of population differentiation using pairwise FST generally revealed no clear population structure in most Iranian dog populations. The genetic signal of a recent demographic expansion was detected in East and Southeast populations. Further, in accordance with previous studies on dog-wolf hybridization for haplogroup d2 origin, the highest number of d2 haplotypes in Iranian dog as compared to other areas of Mediterranean basin suggests Iran as the probable center of its origin. Historical evidence showed that Silk Road linked Iran to countries in South East Asia and other parts of the world, which might have probably influenced effective gene flow within Iran and these regions. The medium nucleotide diversity observed in Iranian dog calls for utilization of appropriate management techniques in increasing effective population size.


Subject(s)
DNA, Mitochondrial/genetics , Dogs/classification , Genetic Variation , Sequence Analysis, DNA/methods , Animals , Dogs/genetics , Gene Flow , Genetics, Population , Haplotypes , Iran , Phylogeny , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...