Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Healthcare (Basel) ; 9(5)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070221

ABSTRACT

To design an accurate sport injury prevention program, alterations in the knee and hip kinematic variables involved in injury mechanisms should be known. The main purpose of the current study was to compare knee and hip kinematic variables during landing and cutting among male football and futsal players, and to discuss them within an injury description frame. Twenty football (20.5 ± 2.1 years., 74.5 ± 6.9 kg and 1.79 ± 0.07 m) and twenty futsal players (20.3 ± 2.0 years., 73.5 ± 7.1 kg and 1.78 ± 0.07 m), with at least three years' experience of playing in the Kerman Province League, participated in this study. Hip flexion, knee flexion and knee valgus angle during two main movements with risk of injury, such as landing and cutting, were measured using a motion capture system with passive markers at 120-Hz sampling frequency. Landing and cutting maneuvers were administered in as natural way as possible. Results showed significant differences in landing and cutting maneuvers between groups in hip flexion, knee flexion and knee valgus angle. Results indicated that footballers have less extension of hip and knee joints than futsal players in landing maneuvers, which may be due to the higher requirement of jumping-landing maneuvers when playing football. In cutting maneuvers, footballers showed less hip and knee flexion than futsal players, whereas the knee valgus angle in cutting maneuvers was lower in futsal players. More information on the injury mechanisms of landing and cutting in football and futsal are needed to improve the design of injury prevention programs.

2.
J Sport Rehabil ; 29(6): 730-737, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-31629326

ABSTRACT

CONTEXT: There is no evidence regarding the effect of the FIFA 11+ on landing kinematics in male soccer players, and few studies exist regarding the evaluating progress of interventions based on the initial biomechanical profile. OBJECTIVE: To investigate the effect of the FIFA 11+ program on landing patterns in soccer players classified as at low or high risk for noncontact anterior cruciate ligament injuries. DESIGN: Randomized controlled trial. SETTING: Field-based functional movement screening performed at the soccer field. PARTICIPANTS: A total of 24 elite male youth soccer players participated in this study. INTERVENTION: The intervention group performed the FIFA 11+ program 3 times per week for 8 weeks, whereas the control group performed their regular warm-up program. MAIN OUTCOME MEASURES: Before and after the intervention, all participants were assessed for landing mechanics using the Landing Error Scoring System. Pretraining Landing Error Scoring System scores were used to determine risk groups. RESULTS: The FIFA 11+ group had greater improvement than the control group in terms of improving the landing pattern; there was a significant intergroup difference (F1,20 = 28.86, P < .001, ηp2=.591). Soccer players categorized as being at high risk displayed greater improvement from the FIFA 11+ program than those at low risk (P = .03). However, there was no significant difference in the proportion of risk category following the routine warm-up program (P = 1.000). CONCLUSIONS: The present study provides evidence of the usefulness of the FIFA 11+ program for reducing risk factors associated with noncontact anterior cruciate ligament injuries. The authors' results also suggest that soccer players with the higher risk profile would benefit more than those with lower risk profiles and that targeting them may improve the efficacy of the FIFA 11+ program.


Subject(s)
Anterior Cruciate Ligament Injuries/prevention & control , Athletic Injuries/prevention & control , Exercise Therapy/methods , Movement/physiology , Soccer , Warm-Up Exercise , Adolescent , Humans , Male
3.
J Hum Kinet ; 50: 179-186, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-28149355

ABSTRACT

The purpose of this study was to investigate the acute effect of different stretching methods, during a warm-up, on the acceleration and speed of soccer players. The acceleration performance of 20 collegiate soccer players (body height: 177.25 ± 5.31 cm; body mass: 65.10 ± 5.62 kg; age: 16.85 ± 0.87 years; BMI: 20.70 ± 5.54; experience: 8.46 ± 1.49 years) was evaluated after different warm-up procedures, using 10 and 20 m tests. Subjects performed five types of a warm-up: static, dynamic, combined static + dynamic, combined dynamic + static, and no-stretching. Subjects were divided into five groups. Each group performed five different warm-up protocols in five non-consecutive days. The warm-up protocol used for each group was randomly assigned. The protocols consisted of 4 min jogging, a 1 min stretching program (except for the no-stretching protocol), and 2 min rest periods, followed by the 10 and 20 m sprint test, on the same day. The current findings showed significant differences in the 10 and 20 m tests after dynamic stretching compared with static, combined, and no-stretching protocols. There were also significant differences between the combined stretching compared with static and no-stretching protocols. We concluded that soccer players performed better with respect to acceleration and speed, after dynamic and combined stretching, as they were able to produce more force for a faster execution.

4.
Asian J Sports Med ; 6(4): e26844, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26715975

ABSTRACT

BACKGROUND: Traditionally, stretching exercises are considered as basic components of warm up aiming to prepare the musculoskeletal system for performance and to prevent injuries. OBJECTIVES: The purpose of this study was to examine the effects of different agonist and antagonist stretching arrangements within a pre-exercise warm-up on hip static (SROM) and dynamic range of motion (DROM). MATERIALS AND METHODS: Sixty trained male subjects (Mean ± SD: height, 177.38 ± 6.92 cm; body mass, 68.4 ± 10.22 kg; age, 21.52 ± 1.17 years) volunteered to participate in this study. SROM was measured by V-sit test and DROM captured by a motion analysis system before and after (i) static stretching for both hip flexor and extensor muscles (SFSE), (ii) dynamic stretching for both hip flexor and extensor muscles (DFDE), (iii) static stretching for the hip flexors and dynamic stretching for hip extensors (SFDE), and (iv) dynamic stretching for the hip flexors and static stretching for hip extensors (DFSE). RESULTS: DFSE showed a significantly higher increase in DROM and SROM than the remainder of the stretching protocols (P < 0.05). There were significant differences between DFDE with SFSE and SFDE (P < 0.05) and SFSE showed significant increase as compared to SFDE (P < 0.05). CONCLUSIONS: In conclusion, DFSE is probably the best stretching arrangement due to producing more post activation potentiation on agonist muscles and less muscle stiffness in antagonist muscles.

5.
J Hum Kinet ; 39: 37-47, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24511339

ABSTRACT

The purpose of this study was to compare the effects of static and dynamic stretching on quadriceps muscle activation during maximal soccer instep kicking. The kicking motion of twelve male college soccer players (body height: 174.66 ± 5.01 cm; body mass: 72.83 ± 4.83 kg; age: 18.83 ± 0.75 years) was captured using six synchronized high-speed infra-red cameras whilst electromyography (EMG) signals from vastus medialis (VM), lateralis (VL) and rectus femoris (RF) were recorded before and after static or dynamic stretching. Analysis of variance designs showed a higher increase in knee extension angular velocity (9.65% vs. -1.45%, p < 0.001), RF (37.5% vs. -8.33%, p < 0.001), VM (12% vs. -12%, p < 0.018), and VL EMG activity (20% vs. -6.67%, p < 0.001) after dynamic stretching exercises. Based on these results, it could be suggested that dynamic stretching is probably more effective in increasing quadriceps muscle activity and knee extension angular velocity during the final swing phase of a maximal soccer instep kick than static stretching.

6.
J Strength Cond Res ; 26(9): 2356-63, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22914098

ABSTRACT

In sport settings, imagery is regarded as one of the most popular and effective techniques to enhance the learning strategies and performance of skills. However, its effect on the correction of improper technique such as landing, which causes injury, is not clear. Therefore, the purpose of this study is to investigate the effect of imagery on knee and hip flexion angle during jump landing in women. The landing motions were captured from 40 female physical education students (height: 166.05 ± 7.52 cm; mass: 55.75 ± 9.23 kg; age: 20.45 ± 1.66 years) using a 3-dimensional technique at 60 Hz by 3 video cameras. There was a significant difference between no imagery (27.04 ± 2.40°) and imagery (22.98 ± 1.95°) on knee valgus angle, and also, there was a significant difference between no imagery (44.88 ± 13.46°) and imagery (62.35 ± 8.34°) on the knee flexion angle (p ≤ 0.001). There is, in addition, a significant difference between the effect of no imagery (28.60 ± 4.88°) and imagery (39.73 ± 7.29°) on hip flexion angle (p ≤ 0.001). It seems that imagery can be used to correct motions and movements. Based on this finding, we concluded that imagery, probably, can be used as a training strategy to change athletic motion; however, the authors suggest further investigation into the efficacy of imagery in the prevention of anterior cruciate ligament injury.


Subject(s)
Athletic Performance/psychology , Hip Joint/physiology , Imagery, Psychotherapy , Knee Joint/physiology , Athletic Injuries/prevention & control , Biomechanical Phenomena , Female , Humans , Young Adult
7.
J Strength Cond Res ; 26(11): 3010-7, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22158101

ABSTRACT

The purpose of this study was to examine the effects of static and dynamic stretching within a preexercise warm-up on angular velocity of knee joint, deepest knee flexion (DKF), and duration of eccentric and concentric contractions, which are relative to the stretch-shortening cycle (SSC) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 Olympic professional male soccer players (height: 180.38 ± 7.34 cm; weight: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 digital video cameras at 50 Hz. There was a significant difference in the DKF after the dynamic stretching (-3.22 ± 3.10°) vs. static stretching (-0.18 ± 3.19°) relative to the no-stretching method with p < 0.001. Moreover, there was significant difference in eccentric duration after the dynamic stretching (0.006 ± 0.01 seconds) vs. static stretching (-0.003 ± 0.01 seconds) relative to the no-stretching method with p < 0.015. There was a significant difference in the concentric duration after the dynamic stretching (-0.007 ± 0.01 seconds) vs. static stretching (0.002 ± 0.01 seconds) relative to the no-stretching method with p < 0.001. There was also a significant difference in knee angular velocity after the dynamic stretching (4.08 ± 3.81 rad·s) vs. static stretching (-5.34 ± 4.40 rad·s) relative to the no-stretching method with p < 0.001. We concluded that dynamic stretching during warm-ups, as compared with static stretching, is probably the most effective way as preparation for the kinematics characteristics of soccer instep kick, which are relative to the SSC.


Subject(s)
Knee Joint/physiology , Muscle Stretching Exercises/methods , Muscle, Skeletal/physiology , Plyometric Exercise , Soccer/physiology , Adolescent , Adult , Biomechanical Phenomena , Humans , Male , Muscle Contraction , Time Factors , Young Adult
8.
J Strength Cond Res ; 25(6): 1647-52, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21358428

ABSTRACT

The purpose of this study was to examine the effects of static and dynamic stretching within a pre-exercise warm-up on hip dynamic range of motion (DROM) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 professional adult male soccer players (height: 180.38 ± 7.34 cm; mass: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 3-dimensional digital video cameras at 50 Hz. Hip DROM at backward, forward, and follow-through phases (instep kick phases) after different warm-up protocols consisting of static, dynamic, and no-stretching on 3 nonconsecutive test days were captured for analysis. During the backswing phase, there was no difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method. There was a significant difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method during (a) the forward phase with p < 0.03, (b) the follow-through phase with p < 0.01, and (c) all phases with p < 0.01. We concluded that professional soccer players can perform a higher DROM of the hip joint during the instep kick after dynamic stretching incorporated in warm-ups, hence increasing the chances of scoring and injury prevention during soccer games.


Subject(s)
Athletic Performance/physiology , Hip/physiology , Muscle Stretching Exercises/methods , Range of Motion, Articular/physiology , Soccer/physiology , Adolescent , Athletes , Exercise/physiology , Humans , Male , Muscle, Skeletal/physiology , Young Adult
9.
J Strength Cond Res ; 25(4): 1177-81, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20838249

ABSTRACT

This study investigated the number of trials necessary to obtain optimal biomechanical responses in 10 consecutive soccer instep kicks. The kicking motions of dominant legs were captured from 5 experienced and skilled adult male soccer players (height: 184.60 ± 4.49 cm; mass: 80 ± 4.24 kg; and age: 25.60 ± 1.14 years) using a 3D infrared high-speed camera at 200 Hz. Some of the important kinematics and kinetics parameters are maximum thigh angular velocity, maximum lower leg angular velocity, maximum of thigh moment, maximum lower leg moment at forward and impact phases, and finally maximum ball velocity after impact selected to be analyzed. There was a significant decrease of ball velocity between the first and the fifth kick and the subsequent kicks. Similarly, the lower leg angular velocity showed a significant decrease after the fifth kick and thereafter. Compared with the first kick, the thigh angular velocity has been shown to decrease after the sixth kick and thereafter, and the thigh moment result of the sixth kick was significantly lower when compared with the first kick. Moreover, the lower leg moment result of the fourth kick was significantly lower in comparison with the first kick. In conclusion, it seems that 5 consecutive kicks are adequate to achieve high kinematics and kinetics responses and selecting more than 5 kicks does not result in any high biomechanical responses for analysis.


Subject(s)
Athletic Performance/physiology , Leg/physiology , Soccer/physiology , Thigh/physiology , Adult , Athletes , Biomechanical Phenomena/physiology , Humans , Male , Muscle, Skeletal/physiology , Task Performance and Analysis , Young Adult
10.
J Strength Cond Res ; 24(10): 2698-704, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20168255

ABSTRACT

The purpose of this study was to examine the effects of static, dynamic, and the combination of static and dynamic stretching within a pre-exercise warm-up on the Illinois agility test (IAT) in soccer players. Nineteen professional soccer players (age = 22.5 ± 2.5 years, height = 1.79 ± 0.003 m, body mass = 74.8 ± 10.9 kg) were tested for agility performance using the IAT after different warm-up protocols consisting of static, dynamic, combined stretching, and no stretching. The players were subgrouped into less and more experienced players (5.12 ± 0.83 and 8.18 ± 1.16 years, respectively). There were significant decreases in agility time after no stretching, among no stretching vs. static stretching; after dynamic stretching, among static vs. dynamic stretching; and after dynamic stretching, among dynamic vs. combined stretching during warm-ups for the agility: mean ± SD data were 14.18 ± 0.66 seconds (no stretch), 14.90 ± 0.38 seconds (static), 13.95 ± 0.32 seconds (dynamic), and 14.50 ± 0.35 seconds (combined). There was significant difference between less and more experienced players after no stretching and dynamic stretching. There was significant decrease in agility time following dynamic stretching vs. static stretching in both less and more experienced players. Static stretching does not appear to be detrimental to agility performance when combined with dynamic warm-up for professional soccer players. However, dynamic stretching during the warm-up was most effective as preparation for agility performance. The data from this study suggest that more experienced players demonstrate better agility skills due to years of training and playing soccer.


Subject(s)
Exercise Test , Muscle Stretching Exercises , Soccer/physiology , Adult , Athletic Performance/physiology , Exercise/physiology , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...