Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chall ; 6(7): 2200036, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35860393

ABSTRACT

Unsaturated polyester resins (UPRs) are expansively used in different applications and recycling the significant amounts of UPR waste is still a universal problem. Vitrimerization is a feasible, environmental-friendly, cost effective, and operative method, which can be used for recycling the crosslinked UPRs. In this method, the thermoset permanent network is changed into a dynamic network similar to the vitrimer-type polymers. The results show that the existence of a transesterification catalyst in the system significantly enhances the efficiency of vitrimerization. The vitrimerized UPR thermosets can be reprocessed three times with mechanical properties comparable to the initial UPR. The results show that the excess of external hydroxyl groups in the system can prevent the formation of zinc ligand complexes in the network and consequently reduce the crosslinked density and mechanical properties of vitrimerized samples. The vitrimerized thermoset powder can be reprocessed through injection molding, extrusion, and compression molding which are conventional thermoplastic processing techniques. The unrecyclable UPR thermoset wastes can be recycled and reused through vitrimerization with the least loss in mechanical properties.

2.
ACS Appl Mater Interfaces ; 13(2): 3419-3425, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33412839

ABSTRACT

The novel vitrimerization concept of converting permanently cross-linked networks of thermoset polymers into dynamic exchangeable networks often relies on transesterification reactions. Transesterification exchange reactions, for example, in epoxy vitrimers, are usually contingent on equivalent ratios of hydroxyl to ester groups and large amounts of catalysts to achieve proper dynamic exchange capability. In general, postconsumer epoxy cured with anhydrides contains very few hydroxyl groups in the network, and it is challenging to convert it into efficient dynamic networks by vitrimerization. Here, we demonstrate that introducing cellulose nanocrystals as feedstock of external hydroxyl groups in the mechanochemical vitrimerization process could improve the exchange reaction rate as well as the thermomechanical properties of the vitrimerized epoxy. This work offers an effective way to recycle and reprocess postconsumer epoxy/anhydride waste with inherent low ratios of hydroxyl to ester groups into higher value-added vitrimer nanocomposites.

3.
ACS Appl Bio Mater ; 4(5): 4176-4183, 2021 05 17.
Article in English | MEDLINE | ID: mdl-35006830

ABSTRACT

Mechanochemical vitrimerization, as a method to recycle cross-linked thermosets by converting the permanent network into a recyclable and reprocessable vitrimer network, inevitably requires a catalyst to accelerate the bond exchange reactions. Here, we demonstrate a catalyst-free approach to achieve the recycling of a cross-linked biobased epoxy into high-performance nanocomposites with cellulose nanocrystals (CNCs). CNCs provide abundant free hydroxyl groups to promote the transesterification exchange reactions while also acting as reinforcing fillers for the resultant nanocomposites. This technique introduces an effective way to fabricate high-performance thermoset nanocomposites based on recycled polymers in an ecofriendly way, promoting the recycle and reuse of thermosets as sustainable nanocomposites for different applications.


Subject(s)
Biocompatible Materials/chemistry , Cellulose/chemistry , Epoxy Compounds/chemistry , Nanoparticles/chemistry , Catalysis , Materials Testing , Molecular Structure , Particle Size , Recycling
4.
Materials (Basel) ; 11(11)2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30380733

ABSTRACT

With growing environmental awareness, natural fibers have recently received significant interest as reinforcement in polymer composites. Among natural fibers, silk can potentially be a natural alternative to glass fibers, as it possesses comparable specific mechanical properties. In order to investigate the processability and properties of silk reinforced composites, vacuum assisted resin transfer molding (VARTM) was used to manufacture composite laminates reinforced with woven silk preforms. Specific mechanical properties of silk/epoxy laminates were found to be anisotropic and comparable to those of glass/epoxy. Silk composites even exhibited a 23% improvement of specific flexural strength along the principal weave direction over the glass/epoxy laminate. Applying 300 kPa external pressure after resin infusion was found to improve the silk/epoxy interface, leading to a discernible increase in breaking energy and interlaminar shear strength. Moreover, the effect of fabric moisture on the laminate properties was investigated. Unlike glass mats, silk fabric was found to be prone to moisture absorption from the environment. Moisture presence in silk fabric prior to laminate fabrication yielded slower fill times and reduced mechanical properties. On average, 10% fabric moisture induced a 25% and 20% reduction in specific flexural strength and modulus, respectively.

5.
J Vis Exp ; (135)2018 05 17.
Article in English | MEDLINE | ID: mdl-29863655

ABSTRACT

This work demonstrates a protocol to improve the quality of composite laminates fabricated by wet lay-up vacuum bag processes using the recently developed magnet assisted composite manufacturing (MACM) technique. In this technique, permanent magnets are utilized to apply a sufficiently high consolidation pressure during the curing stage. To enhance the intensity of the magnetic field, and thus, to increase the magnetic compaction pressure, the magnets are placed on a magnetic top plate. First, the entire procedure of preparing the composite lay-up on a magnetic bottom steel plate using the conventional wet lay-up vacuum bag process is described. Second, placement of a set of Neodymium-Iron-Boron permanent magnets, arranged in alternating polarity, on the vacuum bag is illustrated. Next, the experimental procedures to measure the magnetic compaction pressure and volume fractions of the composite constituents are presented. Finally, methods used to characterize microstructure and mechanical properties of composite laminates are discussed in detail. The results prove the effectiveness of the MACM method in improving the quality of wet lay-up vacuum bag laminates. This method does not require large capital investment for tooling or equipment and can also be used to consolidate geometrically complex composite parts by placing the magnets on a matching top mold positioned on the vacuum bag.


Subject(s)
Equipment Design/methods , Magnets/chemistry , Vacuum , Humans , Pressure
6.
Polymers (Basel) ; 10(9)2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30960917

ABSTRACT

This study presents a novel method to fabricate high-quality, large composite parts which can be used in a wet lay-up/vacuum bag (WLVB) process. The new method utilizes a commercial lifting magnet, which is commonly used for transporting ferrous plates, to apply a magnetic consolidation pressure on the WLVB composite lay-up. The pressure is applied on a large area of the laminate by slowly sliding the magnet over the vacuum bag surface, which leads to an improved laminate quality. When further improvement is desirable, multiple passes of the magnet can be performed, where each pass successively compacts the lay-up. To explore the feasibility of implementing this technique, random mat and plain weave glass/epoxy laminates were fabricated, and their properties compared to conventional WLVB laminates. The effects of the number of moving passes of the lifting magnet on the laminate microstructure and properties are also investigated. As a result of multiple passes, the fiber volume fraction in random mat and plain weave laminates increases to 34% and 53%, representing 80% and 16% improvements, respectively. In addition, the void volume fraction reduces almost by 60% to a very low level of 0.7% and 1.1%, respectively. Consequently, the flexural properties considerably enhance by 20⁻81%, which demonstrates the potential of the proposed method to produce WLVB parts with substantially higher quality. It is also shown that there exists an optimal number of passes, depending on the fabric type where additional passes induce new voids as a result of excessive resin removal.

SELECTION OF CITATIONS
SEARCH DETAIL
...