Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Supercond Sci Technol ; 28(3)2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25883414

ABSTRACT

Long lengths of metal/MgB2 composite conductors with high critical current density (Jc), fabricated by the power-in-tube (PIT) process, have recently become commercially available. Owing to its electromagnetic performance in the 20 K - 30 K range and relatively low cost, MgB2 may be attractive for a variety of applications. One of the key issues for magnet design is stability and quench protection, so the behavior of MgB2 wires and magnets must be understood before large systems can emerge. In this work, the stability and quench behavior of several conduction-cooled MgB2 wires are studied. Measurements of the minimum quench energy and normal zone propagation velocity are performed on short samples in a background magnetic field up to 3 T and on coils in self-field and the results are explained in terms of variations in the conductor architecture, electrical transport behavior, operating conditions (transport current and background magnetic field) and experimental setup (short sample vs small coil). Furthermore, one coil is quenched repeatedly with increasing hot-spot temperature until Jc is decreased. It is found that degradation during quenching correlates directly with temperature and not with peak voltage; a safe operating temperature limit of 260 K at the surface is identified.

2.
Article in English | MEDLINE | ID: mdl-36908826

ABSTRACT

The authors had reported components' development of 3 T-250 mm bore MgB2 magnet system. Pre-reacted MgB2 tape wire with copper lamination had n-value related problem due to raw Boron particle size inequality, but it had been corrected. Long MgB2 wires over 3 km had been supplied. All six component coils were made with a wet winding procedure. They were tested individually with the same cooling scheme of conduction cooling as the actual magnet assembly. Though all coils could be ramped to some extent, some coils showed fairly large remnant voltage. Since the voltage distribution over the coil was not even, the uniformity along the wire length may not be good enough. The stability of the coil was verified by its no training performance even with fast ramping. The magnet assembly and its test with conduction cooling were planned. I c of the superconducting joint with this pre-reacted wire was doubled during past one year's development.

SELECTION OF CITATIONS
SEARCH DETAIL
...