Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Commun Biol ; 6(1): 1230, 2023 12 05.
Article in English | MEDLINE | ID: mdl-38053000

ABSTRACT

Carbon allocation of trees to ectomycorrhizas is thought to shape forest nutrient cycling, but the sink activities of different fungal taxa for host resources are unknown. Here, we investigate fungal taxon-specific differences in naturally composed ectomycorrhizal (EM) communities for plant-derived carbon and nitrogen. After aboveground dual labeling of young beech with 15N and 13C, ectomycorrhizas formed with different fungal taxa exhibit strong differences in label enrichment. Secondary Ion Mass Spectrometry (SIMS) imaging of nitrogen in cross sections of ectomycorrhizas demonstrates plant-derived 15N in both root and fungal structures. Isotope enrichment in ectomycorrhizas correlates with that in the corresponding ectomycorrhiza-attached lateral root, supporting fungal taxon-specific N and C fluxes in ectomycorrhizas. The enrichments with 13C and 15N in the symbiosis decrease with increasing C/N ratio of ectomycorrhizas, converging to zero at high C/N. The relative abundances of EM fungal species on roots are positively correlated with 13C enrichment, demonstrating higher fitness of stronger than of less C-demanding symbioses. Overall, our results support that differences among the C/N ratios in ectomycorrhizas formed with different fungal species regulate the supply of the symbioses with host-derived carbon and provide insights on functional traits of ectomycorrhizas, which are important for major ecosystem processes.


Subject(s)
Mycorrhizae , Mycorrhizae/physiology , Symbiosis , Nitrogen , Carbon , Ecosystem , Plants
2.
Microorganisms ; 8(2)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033191

ABSTRACT

The relationship between trees and root-associated fungal communities is complex. By specific root deposits and other signal cues, different tree species are able to attract divergent sets of fungal species. Plant intraspecific differences can lead to variable fungal patterns in the root's proximity. Therefore, within the Beech Transplant Experiment, we analyzed the impact of three different European beech ecotypes on the fungal communities in roots and the surrounding rhizosphere soil at two time points. Beech nuts were collected in three German sites in 2011. After one year, seedlings of the different progenies were out-planted on one site and eventually re-sampled in 2014 and 2017. We applied high-throughput sequencing of the fungal ITS2 to determine the correlation between tree progeny, a possible home-field advantage, plant development and root-associated fungal guilds under field conditions. Our result showed no effect of beech progeny on either fungal OTU richness or fungal community structure. However, over time the fungal OTU richness in roots increased and the fungal communities changed significantly, also in rhizosphere. In both plant compartments, the fungal communities displayed a high temporal turnover, indicating a permanent development and functional adaption of the root mycobiome of young beeches.

3.
BMC Ecol ; 19(1): 10, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30795747

ABSTRACT

BACKGROUND: Ectomycorrhizal fungi (ECM) play a central role in nutrient cycling in boreal and temperate forests, but their role in the soil food web remains little understood. One of the groups assumed to live as specialised mycorrhizal feeders are Protura, but experimental and field evidence is lacking. We used a combination of three methods to test if Protura are specialized mycorrhizal feeders and compared their trophic niche with other soil invertebrates. Using pulse labelling of young beech and ash seedlings we analysed the incorporation of 13C and 15N into Acerentomon gallicum. In addition, individuals of Protura from temperate forests were collected for the analysis of neutral lipid fatty acids and natural variations in stable isotope ratios. RESULTS: Pulse labelling showed rapid incorporation of root-derived 13C, but no incorporation of root-derived 15N into A. gallicum. The transfer of 13C from lateral roots to ectomycorrhizal root tips was high, while it was low for 15N. Neutral lipid fatty acid (NLFA) analysis showed high amounts of bacterial marker (16:1ω7) and plant marker (16:0 and 18:1ω9) fatty acids but not of the fungal membrane lipid 18:2ω6,9 in A. gallicum. Natural variations in stable isotope ratios in Protura from a number of temperate forests were distinct from those of the great majority of other soil invertebrates, but remarkably similar to those of sporocarps of ECM fungi. CONCLUSIONS: Using three in situ methods, stable isotope labelling, neutral lipid fatty acid analysis and natural variations of stable isotope ratios, we showed that Protura predominantly feed on mycorrhizal hyphae via sucking up hyphal cytoplasm. Predominant feeding on ectomycorrhizal mycelia by Protura is an exception; the limited consumption of ECM by other soil invertebrates may contribute to carbon sequestration in temperate and boreal forests.


Subject(s)
Arthropods/physiology , Food Chain , Mycorrhizae , Animals , Carbon Isotopes/analysis , Feeding Behavior , Forests , Germany , Mycorrhizae/chemistry , Nitrogen Isotopes/analysis , Soil Microbiology
4.
PLoS One ; 12(12): e0189502, 2017.
Article in English | MEDLINE | ID: mdl-29236746

ABSTRACT

Evidence is increasing that soil animal food webs are fueled by root-derived carbon (C) and also by root-derived nitrogen (N). Functioning as link between the above- and belowground system, trees and their species identity are important drivers structuring soil animal communities. A pulse labeling experiment using 15N and 13C was conducted by exposing beech (Fagus sylvatica) and ash (Fraxinus excelsior) seedlings to 13CO2 enriched atmosphere and tree leaves to 15N ammonium chloride solution in a plant growth chamber under controlled conditions for 72 h. C and N fluxes into the soil animal food web of beech, associated with ectomycorrhizal fungi (EMF), and ash, associated with arbuscular mycorrhizal fungi (AMF), were investigated at two sampling dates (5 and 20 days after labeling). All of the soil animal taxa studied incorporated root-derived C, while root-derived N was only incorporated into certain taxa. Tree species identity strongly affected C and N incorporation with the incorporation in the beech rhizosphere generally exceeding that in the ash rhizosphere. Incorporation differed little between 5 and 20 days after labeling indicating that both C and N are incorporated quickly into soil animals and are used for tissue formation. Our results suggest that energy and nutrient fluxes in soil food webs depend on the identity of tree species with the differences being associated with different types of mycorrhiza. Further research is needed to prove the generality of these findings and to quantify the flux of plant C and N into soil food webs of forests and other terrestrial ecosystems.


Subject(s)
Carbon/metabolism , Fagus/metabolism , Food Chain , Forests , Fraxinus/metabolism , Nitrogen/metabolism , Plant Roots/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...