Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37960426

ABSTRACT

In dual-band RF front-end systems, to transmit different frequency signals in different paths, each path requires the power to be divided along two transmission channels. In such systems, a circuit is created in which the input ports of power dividers with different frequency bands are connected to the output ports of a diplexing circuit in a cascade form. These circuits often contain different band filters in their schemes and have a complicated design. In this paper, an innovative technique for designing a diplexing power divider for Ku-band applications is presented. The proposed structure is designed on multilayer printed circuit boards (PCBs) and the utilization of a transition based on an extended SMA connector. The extended SMA connector provides two separate paths for the transmission of the RF signals. Hence, the proposed structure eliminates the need for intricate and bulky bandpass filters, allowing seamless integration with other planar devices and components within Ku-band satellite subsystems. In fact, the proposed architecture channelizes the divided output electromagnetic signals into two separate frequency spectrums. With the presented technique, two frequency ranges are envisaged, covering Ku-band applications at 13-15.8 GHz and 16.6-18.2 GHz. With the proposed structure, an insertion loss as low as 1.5 dB was achieved. A prototype of the proposed power-divider diplexing device was fabricated and measured. It exhibits a good performance in terms of return loss, isolation, and insertion losses.

2.
Sensors (Basel) ; 22(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35590960

ABSTRACT

A stacked multi-layer substrate integrated waveguide (SIW) microstrip patch antenna with broadband operating bandwidth and low cross-polarization radiation is provided. A complete study on the propagating element bandwidth and cross polarization level is presented to demonstrate the importance of the design. The proposed antenna includes three stacked printed circuit board (PCB) layers, including one layer for the radiating 2 × 2 rectangular patch elements and two SIW PCB layers for the feeding network. There are two common methods for excitation in cavity-backed patch antennas: probe feeding (PF) and aperture coupling (AC). PF can be used to increase the bandwidth of the antenna. Although this method increases the antenna's bandwidth, it produces a strong cross-polarized field. The AC method can be used to suppress cross-polarized fields in microstrip patch antennas. As microstrip patch antennas are inherently narrowband, the AC method has little effect on their bandwidth. This paper proposes an antenna that is simultaneously fed by AC and PF. As a result of this innovation, the operating bandwidth of the antenna has increased, and cross-polarization has been reduced. Actually, the combination of probe feeding and aperture coupling schemes leads to achieving a broadband operating bandwidth. The arrangement of radiator elements and cavities implements a mirrored excitation technique while maintaining a low cross-polarization level. In both numerical and experimental solutions, a less than −30 dB cross-polarization level has been achieved for all of the main directions. A fractional impedance bandwidth of 29.8% (10.55−14.25 GHz) for S11 < −10-dB is measured for the proposed array. Simulated and measured results illustrate good agreement. Having features like low cost, light weight, compactness, broadband, integration capabilities, and low cross-polarization level makes the designed antenna suitable for remote-sensing and satellite applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...