Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 157: 348-358, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33189055

ABSTRACT

An adequate amount of Sulfur (S) is essential for proper plant growth and defence against abiotic stresses including metals and metalloids. Arsenic (As) contamination is increasing in agricultural soils rapidly due to anthropogenic activities. Sulfur deficiency and arsenic stress could be more harmful than these individual stresses alone. To understand the impact of S-deficiency and arsenic (31 ppm Na3AsO4 of soil) on ecophysiology, growth, inorganic phosphate level, and proteomic profile of spinach, the present study was conducted. Interaction of arsenic with phosphate transporters, phytochelatins, and glutathione was also analyzed in silico. Comparative 2D MS/MS proteomics helped in the identification of important proteins which might be the key players under S-deficiency and As stress. Upregulation and downregulation of 36 and 21 proteins under As stress; 19 and 36 proteins under S-deficiency; 38 and 31 proteins under combined stress, respectively was observed. A total, 87 proteins subjected to identification via MS/MS ion search were found to be associated with important plant functions. PHO1 abundance was highly influenced by As stress; hence an in-silico homology modeling based molecular docking was performed which indicated high interaction between PHO1 and As/phosphate. Varied proximity of arsenic with phosphate transporters, phytochelatin, and glutathione revealed these components as a potential target of As toxicity/detoxification in Spinach, reflecting sulfur as an important criterion for arsenic tolerance.


Subject(s)
Arsenic/toxicity , Phosphate Transport Proteins/metabolism , Phosphates/metabolism , Spinacia oleracea/metabolism , Sulfur/metabolism , Molecular Docking Simulation , Plant Proteins/metabolism , Proteomics , Spinacia oleracea/drug effects , Stress, Physiological , Tandem Mass Spectrometry , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...