Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1427100, 2024.
Article in English | MEDLINE | ID: mdl-38983847

ABSTRACT

Introduction: Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to the IL-1 Family, is a key mediator ofautoinflammatory diseases associated with the development of macrophage activation syndrome (MAS).High levels of IL-18 correlate with MAS and COVID-19 severity and mortality, particularly in COVID-19patients with MAS. As an inflammation inducer, IL-18 binds its receptor IL-1 Receptor 5 (IL-1R5), leadingto the recruitment of the co-receptor, IL-1 Receptor 7 (IL-1R7). This heterotrimeric complex subsequentlyinitiates downstream signaling, resulting in local and systemic inflammation. Methods: We reported earlier the development of a novel humanized monoclonal anti-human IL-1R7 antibody whichspecifically blocks the activity of human IL-18 and its inflammatory signaling in human cell and wholeblood cultures. In the current study, we further explored the strategy of blocking IL-1R7 inhyperinflammation in vivo using animal models. Results: We first identified an anti-mouse IL-1R7 antibody that significantly suppressed mouse IL-18 andlipopolysaccharide (LPS)-induced IFNg production in mouse splenocyte and peritoneal cell cultures. Whenapplied in vivo, the antibody reduced Propionibacterium acnes and LPS-induced liver injury and protectedmice from tissue and systemic hyperinflammation. Importantly, anti-IL-1R7 significantly inhibited plasma,liver cell and spleen cell IFNg production. Also, anti-IL-1R7 downregulated plasma TNFa, IL-6, IL-1b,MIP-2 production and the production of the liver enzyme ALT. In parallel, anti-IL-1R7 suppressed LPSinducedinflammatory cell infiltration in lungs and inhibited the subsequent IFNg production andinflammation in mice when assessed using an acute lung injury model. Discussion: Altogether, our data suggest that blocking IL-1R7 represents a potential therapeutic strategy to specificallymodulate IL-18-mediated hyperinflammation, warranting further investigation of its clinical application intreating IL-18-mediated diseases, including MAS and COVID-19.


Subject(s)
Inflammation , Lipopolysaccharides , Animals , Mice , Lipopolysaccharides/immunology , Inflammation/immunology , Humans , Interleukin-18/metabolism , Interleukin-18/immunology , Disease Models, Animal , COVID-19/immunology , Mice, Inbred C57BL , Macrophage Activation Syndrome/immunology , SARS-CoV-2/immunology
2.
Neural Regen Res ; 19(10): 2189-2201, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38488552

ABSTRACT

Metabolism is a fundamental process by which biochemicals are broken down to produce energy (catabolism) or used to build macromolecules (anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system.

4.
Proc Natl Acad Sci U S A ; 120(45): e2306476120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37906644

ABSTRACT

The IL-1 Family member IL-38 has been characterized primarily as an antiinflammatory cytokine in human and mouse models of systemic diseases. Here, we examined the role of IL-38 in the murine small intestine (SI). Immunostaining of SI revealed that IL-38 expression partially confines to intestinal stem cells. Cultures of intestinal organoids reveal IL-38 functions as a growth factor by increasing organoid size via inducing WNT3a. In contrast, organoids from IL-38-deficient mice develop more slowly. This reduction in size is likely due to the downregulation of intestinal stemness markers (i.e., Fzd5, Ephb2, and Olfm4) expression compared with wild-type organoids. The IL-38 binding to IL-1R6 and IL-1R9 is still a matter of debate. Therefore, to analyze the molecular mechanisms of IL-38 signaling, we also examined organoids from IL-1R9-deficient mice. Unexpectedly, these organoids, although significantly smaller than wild type, respond to IL-38, suggesting that IL-1R9 is not involved in IL-38 signaling in the stem cell crypt. Nevertheless, silencing of IL-1R6 disabled the organoid response to the growth property of IL-38, thus suggesting IL-1R6 as the main receptor used by IL-38 in the crypt compartment. In organoids from wild-type mice, IL-38 stimulation induced low concentrations of IL-1ß which contribute to organoid growth. However, high concentrations of IL-1ß have detrimental effects on the cultures that were prevented by treatment with recombinant IL-38. Overall, our data demonstrate an important regulatory function of IL-38 as a growth factor, and as an antiinflammatory molecule in the SI, maintaining homeostasis.


Subject(s)
Intestinal Mucosa , Wnt Signaling Pathway , Animals , Mice , Homeostasis , Intercellular Signaling Peptides and Proteins/metabolism , Interleukins/metabolism , Intestinal Mucosa/metabolism , Organoids/metabolism , Stem Cells/metabolism
5.
Cancer Res Commun ; 3(9): 1899-1911, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37772994

ABSTRACT

Defining feature of pancreatic ductal adenocarcinoma (PDAC) that participates in the high mortality rate and drug resistance is the immune-tolerant microenvironment which enables tumors to progress unabated by adaptive immunity. In this study, we report that PDAC cells release CSF-1 to induce nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 (NLRP3) activation in myeloid cells. Increased NLRP3 expression was found in the pancreas of patients with PDAC when compared with normal pancreas which correlated with the formation of the NLRP3 inflammasome. Using human primary cells and an orthotopic PDAC mouse model, we show that NLRP3 activation is responsible for the maturation and release of the inflammatory cytokine IL1ß which selectively drives Th2-type inflammation via COX2/PGE2 induction. As a result of this inflammation, primary tumors were characterized by reduced cytotoxic CD8+ T-cell activation and increased tumor expansion. Genetic deletion and pharmacologic inhibition of NLRP3 enabled the development of Th1 immunity, increased intratumoral levels of IL2, CD8+ T cell­mediated tumor suppression, and ultimately limited tumor growth. In addition, we observed that NLRP3 inhibition in combination with gemcitabine significantly increased the efficacy of the chemotherapy. In conclusion, this study provides a mechanism by which tumor-mediated NLRP3 activation exploits a distinct adaptive immunity response that facilitates tumor escape and progression. Considering the ability to block NLRP3 activity with safe and small orally active molecules, this protein represents a new promising target to improve the limited therapeutic options in PDAC. SIGNIFICANT: This study provides novel molecular insights on how PDAC cells exploit NLRP3 activation to suppress CD8 T-cell activation. From a translational perspective, we demonstrate that the combination of gemcitabine with the orally active NLRP3 inhibitor OLT1177 increases the efficacy of monotherapy.

6.
J Neuroinflammation ; 20(1): 147, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349821

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is characterized by a progressive degeneration of dopaminergic neurons, which leads to irreversible loss of peripheral motor functions. Death of dopaminergic neurons induces an inflammatory response in microglial cells, which further exacerbates neuronal loss. Reducing inflammation is expected to ameliorate neuronal loss and arrest motor dysfunctions. Because of the contribution of the NLRP3 inflammasome to the inflammatory response in PD, we targeted NLRP3 using the specific inhibitor OLT1177®. METHODS: We evaluated the effectiveness of OLT1177® in reducing the inflammatory response in an MPTP neurotoxic model of PD. Using a combination of in vitro and in vivo studies, we analyzed the effects of NLRP3 inhibition on pro-inflammatory markers in the brain, α-synuclein aggregation, and dopaminergic neuron survival. We also determined the effects of OLT1177® on locomotor deficits associated with MPTP and brain penetrance. RESULTS: Treatment with OLT1177® prevented the loss of motor function, reduced the levels of α-synuclein, modulated pro-inflammatory markers in the nigrostriatal areas of the brain, and protected dopaminergic neurons from degeneration in the MPTP model of PD. We also demonstrated that OLT1177® crosses the blood-brain barrier and reaches therapeutic concentrations in the brain. CONCLUSIONS: These data suggest that targeting the NLRP3 inflammasome by OLT1177® may be a safe and novel therapeutic approach to arrest neuroinflammation and protect against neurological deficits of Parkinson's disease in humans.


Subject(s)
Parkinson Disease , Humans , Animals , Mice , Parkinson Disease/drug therapy , alpha-Synuclein/pharmacology , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Dopaminergic Neurons , Mice, Inbred C57BL , Disease Models, Animal
8.
Front Immunol ; 13: 840719, 2022.
Article in English | MEDLINE | ID: mdl-35693797

ABSTRACT

IL-38 is a recently discovered cytokine and member of the IL-1 Family. In the IL-1 Family, IL-38 is unique because the cytokine is primarily a B lymphocyte product and functions to suppress inflammation. Studies in humans with inflammatory bowel disease (IBD) suggest that IL-38 may be protective for ulcerative colitis or Crohn's disease, and that IL-38 acts to maintain homeostasis in the intestinal tract. Here we investigated the role of endogenous IL-38 in experimental colitis in mice deficient in IL-38 by deletion of exons 1-4 in C57 BL/6 mice. Compared to WT mice, IL-38 deficient mice subjected to dextran sulfate sodium (DSS) showed greater severity of disease, more weight loss, increased intestinal permeability, and a worse histological phenotype including increased neutrophil influx in the colon. Mice lacking IL-38 exhibited elevated colonic Nlrp3 mRNA and protein levels, increased caspase-1 activation, and the concomitant increased processing of IL-1ß precursor into active IL-1ß. Expression of IL-1α, an exacerbator of IBD, was also upregulated. Colonic myleloperoxidase protein and Il17a, and Il17f mRNA levels were higher in the IL-38 deficient mice. Daily treatment of IL-38 deficient mice with an NLRP3 inhibitor attenuated diarrhea and weight loss during the recovery phase. These data implicate endogenous IL-38 as an anti-inflammatory cytokine that reduces DSS colitis severity. We propose that a relative deficiency of IL-38 contributes to IBD by disinhibition of the NLRP3 inflammasome.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Interleukin-1/metabolism , Animals , Colitis/chemically induced , Colitis/genetics , Colitis/metabolism , Cytokines , Dextran Sulfate , Gene Deletion , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Interleukin-1/genetics , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Messenger , Weight Loss
9.
Cells ; 11(11)2022 05 30.
Article in English | MEDLINE | ID: mdl-35681481

ABSTRACT

Activating and inhibitory immune receptors play a critical role in regulating systemic and central nervous system (CNS) immune and inflammatory processes. The CD200R1 immunoreceptor induces a restraining signal modulating inflammation and phagocytosis in the CNS under different inflammatory conditions. However, it remains unknown whether CD200R1 has a role in modulating the inflammatory response after a peripheral nerve injury, an essential component of the successful regeneration. Expression of CD200R1 and its ligand CD200 was analyzed during homeostasis and after a sciatic nerve crush injury in C57Bl/6 mice. The role of CD200R1 in Wallerian Degeneration (WD) and nerve regeneration was studied using a specific antibody against CD200R1 injected into the nerve at the time of injury. We found an upregulation of CD200R1 mRNA after injury whereas CD200 was downregulated acutely after nerve injury. Blockade of CD200R1 significantly reduced the acute entrance of both neutrophils and monocytes from blood after nerve injury. When long term regeneration and functional recovery were evaluated, we found that blockade of CD200R1 had a significant effect impairing the spontaneous functional recovery. Taken together, these results show that CD200R1 has a role in mounting a successful acute inflammatory reaction after injury, and contributes to an effective functional recovery.


Subject(s)
Nerve Regeneration , Orexin Receptors , Peripheral Nerve Injuries , Animals , Mice , Nerve Crush , Orexin Receptors/metabolism , Phagocytosis/genetics , Sciatic Nerve
10.
Exp Neurol ; 347: 113889, 2022 01.
Article in English | MEDLINE | ID: mdl-34624330

ABSTRACT

Spinal cord injury (SCI) leads to irreversible functional deficits due to the disruption of axons and the death of neurons and glial cells. The inflammatory response that occurs in the injured spinal cord results in tissue degeneration; thus, targeting inflammation after acute SCI is expected to ameliorate histopathological evidence indicative of damage and, consequently, reduce functional disabilities. Interleukin 1 beta (IL-1ß) and interleukin 18 (IL-18) are pro-inflammatory cytokines members of the IL-1 family that initiate and propagate inflammation. Here, we report that protein levels of IL-1ß and IL-18 were increased in spinal cord parenchyma after SCI, but with different expression profiles. Whereas levels of IL-1ß were rapidly increased reaching peak levels at 12 h after the injury, levels of IL-18 did not increase until 7 days after the injury. Since activation of the NLRP3 inflammasome is required for the processing and release of IL-1ß and IL-18, we intraperitoneally administered OLT1177, a selective inhibitor of the NLRP3 inflammasome, to reduce the contribution of these cytokines to SCI. At a dose of 200 mg/kg, OLT1177 protected against neurological deficits and histological evidence of damage. OLT1177 also reduced the levels of IL-1ß in the spinal cord after contusion injury and diminished the accumulation of neutrophils and macrophages at later time points. These data suggest that targeting the NLRP3 inflammasome with OLT1177 could be a novel therapeutic strategy to arrest neuroinflammation and reduce functional impairments after acute SCI in humans.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammasomes/drug effects , Myelin Sheath/pathology , Nitriles/pharmacology , Spinal Cord Injuries/immunology , Sulfones/pharmacology , Animals , Female , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/pathology , Spinal Cord Injuries/pathology
11.
Theranostics ; 11(20): 9805-9820, 2021.
Article in English | MEDLINE | ID: mdl-34815787

ABSTRACT

Background: Microglia and macrophages adopt a pro-inflammatory phenotype after spinal cord injury (SCI), what is thought to contribute to secondary tissue degeneration. We previously reported that this is due, in part, to the low levels of anti-inflammatory cytokines, such as IL-4. Since IL-13 and IL-4 share receptors and both cytokines drive microglia and macrophages towards an anti-inflammatory phenotype in vitro, here we studied whether administration of IL-13 and IL-4 after SCI leads to beneficial effects. Methods: We injected mice with recombinant IL-13 or IL-4 at 48 h after SCI and assessed their effects on microglia and macrophage phenotype and functional outcomes. We also performed RNA sequencing analysis of macrophages and microglia sorted from the injured spinal cords of mice treated with IL-13 or IL-4 and evaluated the metabolic state of these cells by using Seahorse technology. Results: We observed that IL-13 induced the expression of anti-inflammatory markers in microglia and macrophages after SCI but, in contrast to IL-4, it failed to mediate functional recovery. We found that these two cytokines induced different gene signatures in microglia and macrophages after SCI and that IL-4, in contrast to IL-13, shifted microglia and macrophage metabolism from glycolytic to oxidative phosphorylation. These findings were further confirmed by measuring the metabolic profile of these cells. Importantly, we also revealed that macrophages stimulated with IL-4 or IL-13 are not deleterious to neurons, but they become cytotoxic when oxidative metabolism is blocked. This suggests that the metabolic shift, from glycolysis to oxidative phosphorylation, is required to minimize the cytotoxic responses of microglia and macrophages. Conclusions: These results reveal that the metabolic fitness of microglia and macrophages after SCI contributes to secondary damage and that strategies aimed at boosting oxidative phosphorylation might be a novel approach to minimize the deleterious actions of microglia and macrophages in neurotrauma.


Subject(s)
Interleukin-13/metabolism , Interleukin-4/metabolism , Spinal Cord Injuries/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Disease Models, Animal , Female , Interleukin-13/immunology , Interleukin-13/pharmacology , Interleukin-4/immunology , Interleukin-4/pharmacology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , Recovery of Function/physiology , Spinal Cord/metabolism , Spinal Cord Injuries/immunology , Spinal Cord Injuries/physiopathology , Treatment Outcome
12.
Theranostics ; 11(1): 1-13, 2021.
Article in English | MEDLINE | ID: mdl-33391457

ABSTRACT

Background: Interleukin 37 (IL-37), a member of IL-1 family, broadly suppresses inflammation in many pathological conditions by acting as a dual-function cytokine in that IL-37 signals via the extracellular receptor complex IL1-R5/IL-1R8, but it can also translocate to the nucleus. However, whether IL-37 exerts beneficial actions in neuroinflammatory diseases, such as multiple sclerosis, remains to be elucidated. Thus, the goals of the present study were to evaluate the therapeutic effects of IL-37 in a mouse model of multiple sclerosis, and if so, whether this is mediated via the extracellular receptor complex IL-1R5/IL-1R8. Methods: We used a murine model of MS, the experimental autoimmune encephalomyelitis (EAE). We induced EAE in three different single and double transgenic mice (hIL-37tg, IL-1R8 KO, hIL-37tg-IL-1R8 KO) and wild type littermates. We also induced EAE in C57Bl/6 mice and treated them with various forms of recombinant human IL-37 protein. Functional and histological techniques were used to assess locomotor deficits and demyelination. Luminex and flow cytometry analysis were done to assess the protein levels of pro-inflammatory cytokines and different immune cell populations, respectively. qPCRs were done to assess the expression of IL-37, IL-1R5 and IL-1R8 in the spinal cord of EAE, and in blood peripheral mononuclear cells and brain tissue samples of MS patients. Results: We demonstrate that IL-37 reduces inflammation and protects against neurological deficits and myelin loss in EAE mice by acting via IL1-R5/IL1-R8. We also reveal that administration of recombinant human IL-37 exerts therapeutic actions in EAE mice. We finally show that IL-37 transcripts are not up-regulated in peripheral blood mononuclear cells and in brain lesions of MS patients, despite the IL-1R5/IL-1R8 receptor complex is expressed. Conclusions: This study presents novel data indicating that IL-37 exerts therapeutic effects in EAE by acting through the extracellular receptor complex IL-1R5/IL-1R8, and that this protective physiological mechanism is defective in MS individuals. IL-37 may therefore represent a novel therapeutic avenue for the treatment of MS with great promising potential.


Subject(s)
Brain/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Interleukin-1/genetics , Multiple Sclerosis, Chronic Progressive/genetics , Multiple Sclerosis, Relapsing-Remitting/genetics , Receptors, Interleukin-1/genetics , Spinal Cord/metabolism , Adult , Aged , Animals , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Female , Humans , Inflammation , Interleukin-1/pharmacology , Male , Mice , Mice, Knockout , Mice, Transgenic , Middle Aged , Multiple Sclerosis, Chronic Progressive/metabolism , Multiple Sclerosis, Relapsing-Remitting/metabolism , Receptors, Interleukin-1/metabolism , Spinal Cord/pathology
13.
Brain Behav Immun ; 91: 194-201, 2021 01.
Article in English | MEDLINE | ID: mdl-33002630

ABSTRACT

Interleukin 37 (IL-37) is an anti-inflammatory cytokine of the interleukin 1 family. Transgenic mice expressing the human form of the IL37 gene (hIL-37Tg) display protective effects in several animal models of disease. Previous data from our group revealed that IL-37 limits inflammation after spinal cord injury (SCI) and ameliorates tissue damage and functional deficits. IL-37 can exert its anti-inflammatory effects by translocating to the nucleus or acting as an extracellular cytokine. However, whether this protection after SCI is mediated by translocating to the nucleus, activating of extracellular receptors, or both, is currently unknown. In the present study, we used different transgenic animals to answer this question. We demonstrated that the beneficial effects of IL-37 on functional and histological outcomes after SCI were lost in the lack of the extracellular receptor IL-1R8, indicating that IL-37 induces protection as an extracellular cytokine. On the other hand, transgenic mice with the nuclear function of IL-37 abolished (hIL-37D20ATg) showed significant improvement in locomotor skills and myelin sparing after SCI, indicating that nuclear pathway is not required for the protective actions of IL-37. Moreover, we also showed that the therapeutic effects of the recombinant IL-37 protein are produced only in the presence of the extracellular receptor IL-1R8, further highlighting the importance of the extracellular function of this cytokine after SCI. Finally, we revealed that the administration of recombinant IL-37 protein exerted therapeutic actions when administered in the lesion site but not systemically. This work demonstrated for the first time that translocation of IL-37 to the nucleus is not required for the beneficial actions of this cytokine after SCI and highlights the importance of the extracellular signaling of IL-37 to mediate neuroprotective actions.


Subject(s)
Interleukin-1 , Spinal Cord Injuries , Animals , Cytokines , Inflammation , Mice , Mice, Transgenic , Recovery of Function , Spinal Cord
14.
Proc Natl Acad Sci U S A ; 117(12): 6651-6662, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32152116

ABSTRACT

A role for microglia in neuropsychiatric diseases, including major depressive disorder (MDD), has been postulated. Regulation of microglial phenotype by immune receptors has become a central topic in many neurological conditions. We explored preclinical and clinical evidence for the role of the CD300f immune receptor in the fine regulation of microglial phenotype and its contribution to MDD. We found that a prevalent nonsynonymous single-nucleotide polymorphism (C/T, rs2034310) of the human CD300f receptor cytoplasmic tail inhibits the protein kinase C phosphorylation of a threonine and is associated with protection against MDD, mainly in women. Interestingly, CD300f-/- mice displayed several characteristic MDD traits such as augmented microglial numbers, increased interleukin 6 and interleukin 1 receptor antagonist messenger RNA, alterations in synaptic strength, and noradrenaline-dependent and persistent depressive-like and anhedonic behaviors in females. This behavioral phenotype could be potentiated inducing the lipopolysaccharide depression model. RNA sequencing and biochemical studies revealed an association with impaired microglial metabolic fitness. In conclusion, we report a clear association that links the function of the CD300f immune receptor with MDD in humans, depressive-like and anhedonic behaviors in female mice, and altered microglial metabolic reprogramming.


Subject(s)
Anhedonia , Depressive Disorder, Major/pathology , Inflammation/etiology , Microglia/pathology , Polymorphism, Single Nucleotide , Receptors, Immunologic/genetics , Receptors, Immunologic/physiology , Animals , Behavior, Animal , Cohort Studies , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/psychology , Female , Gene Expression Profiling , Humans , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Synapses
15.
J Neuroinflammation ; 16(1): 124, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31186006

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) usually causes a devastating lifelong disability for patients. After a traumatic lesion, disruption of the blood-spinal cord barrier induces the infiltration of macrophages into the lesion site and the activation of resident glial cells, which release cytokines and chemokines. These events result in a persistent inflammation, which has both detrimental and beneficial effects, but eventually limits functional recovery and contributes to the appearance of neuropathic pain. Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that regulate the expression of inflammatory genes by interacting with acetylated lysine residues. While BET inhibitors are a promising therapeutic strategy for cancer, little is known about their implication after SCI. Thus, the current study was aimed to investigate the anti-inflammatory role of BET inhibitors in this pathologic condition. METHODS: We evaluated the effectiveness of the BET inhibitor JQ1 to modify macrophage reactivity in vitro and to modulate inflammation in a SCI mice model. We analyzed the effects of BET inhibition in pro-inflammatory and anti-inflammatory cytokine production in vitro and in vivo. We determined the effectiveness of BET inhibition in tissue sparing, inflammation, neuronal protection, and behavioral outcome after SCI. RESULTS: We have found that the BET inhibitor JQ1 reduced the levels of pro-inflammatory mediators and increased the expression of anti-inflammatory cytokines. A prolonged treatment with JQ1 also decreased reactivity of microglia/macrophages, enhanced neuroprotection and functional recovery, and acutely reduced neuropathic pain after SCI. CONCLUSIONS: BET protein inhibition is an effective treatment to regulate cytokine production and promote neuroprotection after SCI. These novel results demonstrate for the first time that targeting BET proteins is an encouraging approach for SCI repair and a potential strategy to treat other inflammatory pathologies.


Subject(s)
Azepines/pharmacology , Cytokines/drug effects , Nerve Tissue Proteins/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Receptors, Cell Surface/antagonists & inhibitors , Spinal Cord Injuries/metabolism , Triazoles/pharmacology , Animals , Cytokines/biosynthesis , Female , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Recovery of Function/drug effects
16.
Proc Natl Acad Sci U S A ; 116(10): 4456-4461, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30792349

ABSTRACT

The IL-1 family member IL-37 broadly suppresses innate inflammation and acquired immunity. Similar to IL-1α and IL-33, IL-37 is a dual-function cytokine in that IL-37 translocates to the nucleus but also transmits a signal via surface membrane receptors. The role of nuclear IL-37 remains unknown on the ability of this cytokine to inhibit innate inflammation. Here, we compared suppression of innate inflammation in transgenic mice expressing native human IL-37 (IL-37Tg) with those of transgenic mice carrying the mutation of aspartic acid (D) to alanine (A) at amino acid 20 (IL-37D20ATg). The mutation D20A prevents cleavage of caspase-1, a step required for IL-37 nuclear translocation. In vitro, peritoneal macrophages from IL-37Tg mice reduced LPS-induced IL-1ß, IL-6, TNFα and IFNγ by 40-50% whereas in macrophages from IL-37D20ATg mice this suppression was not observed, consistent with loss of nuclear function. Compared with macrophages from IL-37Tg mice, significantly less or no suppression of LPS-induced MAP kinase and NFκB activation was also observed in macrophages from IL-37D20ATg mice. In vivo, levels of IL-1ß, IL-6, and TNFα in the lungs and liver were markedly reduced during endotoxemia in IL-37Tg mice but not observed in IL-37D20ATg mice. However, suppression of innate inflammation remains intact in the IL-37D20A mice once the cytokine is released from the cell and binds to its receptor. These studies reveal a nuclear function for suppression of innate inflammation and are consistent with the dual function of IL-37 and a role for caspase-1 in limiting inflammation.


Subject(s)
Immunity, Innate/genetics , Interleukin-1/physiology , Animals , Cell Nucleus/metabolism , Cytokines/metabolism , Female , Interleukin-1/genetics , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , NF-kappa B/metabolism , Protein Transport
17.
Curr Protoc Immunol ; 123(1): e57, 2018 11.
Article in English | MEDLINE | ID: mdl-30253064

ABSTRACT

Spinal cord injury (SCI) leads to irreversible devastating neurological disabilities. Accumulated evidence in the literature indicates that the inflammatory response that occurs in the spinal cord following injury contributes importantly to spread tissue damage to healthy regions adjacent to the lesion site, and consequently, to increase neurological deficits. Therefore, targeting inflammation could lead to the development of new therapies to prevent tissue damage and neurological impairments after SCI. Inflammation is regulated, in part, by the expression of pro-inflammatory and anti-inflammatory cytokines synthesized, mainly, by glial cells. Hence, methodologies that could ease the quantification of multiple cytokines and immune cells from spinal cord tissue samples are needed to assess the potential of new anti-inflammatory therapies. In the present unit, we describe how to induce contusion injuries in the mouse spinal cord, as well as, two useful methodologies to assess neuroinflammation in lesioned spinal cord tissue samples. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Neuroglia , Spinal Cord Injuries , Spinal Cord , Animals , Disease Models, Animal , Humans , Inflammation/metabolism , Inflammation/pathology , Mice , Neuroglia/metabolism , Neuroglia/pathology , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
18.
Brain Behav Immun ; 73: 416-426, 2018 10.
Article in English | MEDLINE | ID: mdl-29870752

ABSTRACT

The interaction between CD200 and its receptor CD200R1 is among the central regulators of microglia and macrophage phenotype. However, it remains to be established whether, in the context of a traumatic CNS injury, CD200R1 act as a negative regulator of these particular innate immune cells, and if the exogenous delivery of CD200 may ameliorate neurological deficits. In the present study, we first evaluated whether preventing the local interaction between the pair CD200-CD200R1, by using a selective blocking antibody against CD200R1, has a role on functional and inflammatory outcome after contusion-induced spinal cord injury (SCI) in mice. The injection of the αCD200R1, but not control IgG1, into the lesioned spinal cord immediately after the SCI worsened locomotor performance and exacerbated neuronal loss and demyelination. At the neuroimmunological level, we observed that microglial cells and macrophages showed increased levels of iNOS and Ly6C upon CD200R1 blockade, indicating that the disruption of CD200R1 drove these cells towards a more pro-inflammatory phenotype. Moreover, although CD200R1 blockade had no effect in the initial infiltration of neutrophils into the lesioned spinal cord, it significantly impaired their clearance, which is a key sign of excessive inflammation. Interestingly, intraparenchymal injection of recombinant CD200-His immediately after the injury induced neuroprotection and robust and long-lasting locomotor recovery. In conclusion, this study reveals that interaction of CD200-CD200R1 plays a crucial role in limiting inflammation and lesion progression after SCI, and that boosting the stimulation of this pathway may constitute a new therapeutic approach.


Subject(s)
Antigens, CD/physiology , Orexin Receptors/physiology , Spinal Cord Injuries/metabolism , Animals , Antigens, CD/metabolism , Chemokines/metabolism , Female , Inflammation/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , Neuroimmunomodulation/immunology , Neuroimmunomodulation/physiology , Neutrophils/metabolism , Orexin Receptors/metabolism , Spinal Cord/metabolism , Spinal Cord Injuries/physiopathology
19.
Glia ; 64(12): 2079-2092, 2016 12.
Article in English | MEDLINE | ID: mdl-27470986

ABSTRACT

Macrophages and microglia play a key role in the maintenance of nervous system homeostasis. However, upon different challenges, they can adopt several phenotypes, which may lead to divergent effects on tissue repair. After spinal cord injury (SCI), microglia and macrophages show predominantly pro-inflammatory activation and contribute to tissue damage. However, the factors that hamper their conversion to an anti-inflammatory state after SCI, or to other protective phenotypes, are poorly understood. Here, we show that IL-4 protein levels are undetectable in the spinal cord after contusion injury, which likely favors microglia and macrophages to remain in a pro-inflammatory state. We also demonstrate that a single delayed intraspinal injection of IL-4, 48 hours after SCI, induces increased expression of M2 marker in microglia and macrophages. We also show that delayed injection of IL-4 leads to the appearance of resolution-phase macrophages, and that IL-4 enhances resolution of inflammation after SCI. Interestingly, we provide clear evidence that delayed administration of IL-4 markedly improves functional outcomes and reduces tissue damage after contusion injury. It is possible that these improvements are mediated by the presence of macrophages with M2 markers and resolution-phase macrophages. These data suggest that therapies aimed at increasing IL-4 levels could be valuable for the treatment of acute SCI, for which there are currently no effective treatments. GLIA 2016;64:2079-2092.


Subject(s)
Interleukin-4/pharmacology , Macrophages/metabolism , Microglia/metabolism , Recovery of Function/physiology , Spinal Cord Injuries/metabolism , Animals , Arginase/metabolism , Cytokines/metabolism , Evoked Potentials, Motor/drug effects , Evoked Potentials, Motor/physiology , Female , Flow Cytometry , Interleukin-4/metabolism , Mice , Mice, Inbred C57BL , Muscle, Skeletal/physiopathology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Receptors, Cell Surface/metabolism , Recovery of Function/drug effects , Spinal Cord Injuries/drug therapy , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...