Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Direct ; 7(8): e521, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37638231

ABSTRACT

Sorghum is an essential crop for resilient and adaptive responses to climate change. The root systems of crop plants significantly contribute to the tolerance of abiotic stresses. There is little information on sorghum genotypes' root systems and plasticity to external P supply. In this paper, we investigated the variations in root systems, as well as the responses, trait relationships, and plasticity of two sorghum genotypes (Naga Red and Naga White), popularly grown in Ghana, to five external P concentrations ([P]ext): 0, 100, 200, 300, and 400 mg P kg-1 soil. Sorghum plants were grown in greenhouse pots and harvested for root trait measurements at the five-leaf and growing point differentiation (GPD) developmental stages. The plants were responsive to [P]ext and formed rhizosheaths. The two genotypes showed similar characteristics for most of the traits measured but differed significantly in total and lateral root lengths in favor of the red genotype. For example, at the five-leaf growth stage, the lateral root length of the red and white genotypes was 22.8 and 16.2 cm, respectively, but 124 and 88.9 cm, at the GPD stage. The responses and plasticity of the root system traits, including rhizosheath, to [P]ext were more prominent, positive, and linear at the five-leaf stage than at the GPD growth stage. At the five-leaf growth stage, total root length increased by about 2.5-fold with increasing [P]ext compared to the unamended soil. At the GPD stage, however, total root length decreased by about 1.83-fold as [P]ext increased compared to the unamended soil. Specific rhizosheath weight correlated with RHD, albeit weakly, and together explained up to 59% of the variation in tissue P. Root hair density was more responsive to P supply than root hair length and showed a similar total and lateral root length pattern. Most desirable responses to P occurred at a rate of 200-300 mg P kg-1 soil. It is concluded that sorghum would form rhizosheath, and [P]ext could be critical for the early vigorous growth of sorghum's responsive root and shoot traits. Beyond the early days of development, additional P application might be necessary to sustain the responses and plasticity observed during the early growth period, but this requires further investigation, potentially under field conditions.

2.
Plant Phenomics ; 2022: 0002, 2022.
Article in English | MEDLINE | ID: mdl-37266139

ABSTRACT

Due to roots' physical and physiological roles in crop productivity, interest in root system architecture (RSA) and plasticity in responses to abiotic stresses is growing. Sorghum is significant for the food security of millions of people. Phosphorus deficiency is an important limitation of sorghum productivity. There is little information on the RSA-based responses of sorghum to variations in external P supply ([P]ext). This study evaluated the phenotypic plasticity and RSA responses to a range of [P]ext in 2 sorghum genotypes. The results showed that both genotypes responded to [P]ext but with significant variations in about 80% of the RSA traits analyzed. Aboveground biomass and most RSA traits increased with increasing [P]ext. Plasticity was both genotype- and trait-dependent. For most RSA traits, the white sorghum genotype showed significantly higher plasticity than the red genotype, with the former having about 28.4% higher total plasticity than the former. RSA traits, such as convex area, surface area, total root length, and length diameter ranges, showed sizeable genetic variability. Root biomass had a high degree of plasticity, but root number and angle traits were the leading contributors to variation. The results suggested 2 root trait spectra: root exploration and developmental spectrum, and there was an indication of potential trade-offs among groups of root traits. It is concluded that RSA traits in sorghum contribute to variability and plasticity in response to [P]ext. Given that there might be trade-offs among sorghum root traits, it would be instructive to determine the fundamental constraints underlying these trade-offs.

SELECTION OF CITATIONS
SEARCH DETAIL
...