Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(11): e0274407, 2022.
Article in English | MEDLINE | ID: mdl-36350805

ABSTRACT

Since early March 2020, government agencies have utilized a wide variety of non-pharmaceutical interventions to mitigate the spread of COVID-19 and have struggled to determine when it is appropriate to return to in-person activities after an outbreak is detected. At many universities, fundamental issues related to understanding the spread of the disease (e.g. the transmission rate), the ability of administrators to respond quickly enough by closing when there is a sudden rise in cases, and how to make a decision on when to reopen remains a concern. Surveillance testing strategies have been implemented in some places, and those test outcomes have dictated whether to reopen, to simultaneously monitor community spread, and/or to isolate discovered cases. However, the question remains as to when it is safe to reopen and how much testing is required to remain safely open while keeping infection numbers low. Here, we propose an extension of the classic SIR model to investigate reopening strategies for a fixed testing strategy, based on feedback from testing results. Specifically, we close when a predefined proportion of the population becomes infected, and later reopen when that infected proportion decreases below a predefined threshold. A valuable outcome of our approach is that our reopening strategies are robust to variation in almost all model parameters, including transmission rates, which can be extremely difficult to determine as they typically differ between variants, location, vaccination status, etc. Thus, these strategies can be, in theory, translated over to new variants in different regions of the world. Examples of robust feedback strategies for high disease transmission and a fixed testing capacity include (1) a single long lock down followed by a single long in-person period, and (2) multiple shorter lock downs followed by multiple shorter in-person periods. The utility of this approach of having multiple strategies is that administrators of universities, schools, business, etc. can use a strategy that is best adapted for their own functionality.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Schools , Disease Outbreaks/prevention & control , Universities
2.
J Theor Biol ; 553: 111257, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36057342

ABSTRACT

Microtubules (MTs) are protein polymers found in all eukaryotic cells. They are crucial for normal cell development, providing structural support for the cell and aiding in the transportation of proteins and organelles. In order to perform these functions, MTs go through periods of relatively slow polymerization (growth) and very fast depolymerization (shortening), where the switch from growth to shortening is called a catastrophe and the switch from shortening to growth is called a rescue. Although MT dynamic instability has traditionally been described solely in terms of growth and shortening, MTs have been shown to pause for extended periods of time, however the reason for pausing is not well understood. Here, we present a new mathematical model to describe MT dynamics in terms of growth, shortening, and pausing. Typically, MT dynamics are defined by four key parameters which include the MT growth rate, shortening rate, frequency of catastrophe, and the frequency of rescue. We derive a mathematical expression for the catastrophe frequency in the presence of pausing, as well as expressions to describe the total time that MTs spend in a state of growth and pause. In addition to exploring MT dynamics in a control-like setting, we explore the implicit effect of stabilizing MT associated proteins (MAPs) and stabilizing and destabilizing chemotherapeutic drugs that target MTs on MT dynamics through variations in model parameters.


Subject(s)
Microtubule-Associated Proteins , Microtubules , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Models, Theoretical , Polymerization , Polymers/analysis , Polymers/metabolism , Polymers/pharmacology , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...