Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(30): 21901-21914, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38989248

ABSTRACT

Despite their efficacy in eliminating undesired crops and increasing yield, a range of environmental issues and chronic ailments arise when hazardous chemicals are highly concentrated in wastewater and then deposited into rivers, lakes or the air. Hence, the detection of these chemicals has become a cause of concern for researchers and scientists because they contribute largely to serious health problems. Herein, the potential of newly tailored nanomaterials for the detection of 2,4 dichlorophenoxyacetic acid (DCP) in humans was examined. The theoretical approach adopted in this work is within the framework of density functional theory (DFT) using the DFT/B3LYP-D3/def2SVP computational method. The reduction in the energy gap upon adsorption is indicative of good adsorbing properties. A chemisorption phenomenon was observed for DCP-GP/AlN. However, in most cases, physisorption occurs. Interestingly, the noncovalent nature of the interactions was observed in all the cases, indicating that the material was good. The green colour of the 3D RDG maps implies a significant intermolecular interaction. Sensor mechanisms confirmed that the nanocomposite materials exhibit excellent detection potential for DCP through greater charge transfer, better sensitivity, conductivity, and enhanced adsorption capacity. The potential of nanocomposite materials as stable and promising detectors for DCP pollutants was confirmed in this study. Hence, the studied GP/AlN nanocomposite material can be used in the engineering of future sensor devices for detecting DCP.

2.
RSC Adv ; 14(8): 5351-5369, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38348297

ABSTRACT

Owing to the fact that the detection limit of already existing sensor-devices is below 100% efficiency, the use of 3D nanomaterials as detectors and sensors for various pollutants has attracted interest from researchers in this field. Therefore, the sensing potentials of bare and the impact of Cu-group transition metal (Cu, Ag, Au)-functionalized silicon carbide nanotube (SiCNT) nanostructured surfaces were examined towards the efficient detection of NO2 gas in the atmosphere. All computational calculations were carried out using the density functional theory (DFT) electronic structure method at the B3LYP-D3(BJ)/def2svp level of theory. The mechanistic results showed that the Cu-functionalized silicon carbide nanotube surface possesses the greatest adsorption energies of -3.780 and -2.925 eV, corresponding to the adsorption at the o-site and n-site, respectively. Furthermore, the lowest energy gap of 2.095 eV for the Cu-functionalized surface indicates that adsorption at the o-site is the most stable. The stability of both adsorption sites on the Cu-functionalized surface was attributed to the small ellipticity (ε) values obtained. Sensor mechanisms confirmed that among the surfaces, the Cu-functionalized surface exhibited the best sensing properties, including sensitivity, conductivity, and enhanced adsorption capacity. Hence, the Cu-functionalized SiCNT can be considered a promising choice as a gas sensor material.

3.
RSC Adv ; 13(36): 25391-25407, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37636506

ABSTRACT

Diazomethane (CH2N2) presents a notable hazard as a respiratory irritant, resulting in various adverse effects upon exposure. Consequently, there has been increasing concern in the field of environmental research to develop a sensor material that exhibits heightened sensitivity and conductivity for the detection and adsorption of this gas. Therefore, this study aims to provide a comprehensive analysis of the geometric structure of three systems: CH2N2@MgO (C1), CH2N2@YMgO (CY1), and CH2N2@ZrMgO (CZ1), in addition to pristine MgO nanocages. The investigation involves a theoretical analysis employing the DFT/ωB97XD method at the GenECP/6-311++G(d,p)/SDD level of theory. Notably, the examination of bond lengths within the MgO cage yielded specific values, including Mg15-O4 (1.896 Å), Mg19-O4 (1.952 Å), and Mg23-O4 (1.952 Å), thereby offering valuable insights into the structural properties and interactions with CH2N2 gas. Intriguingly, after the interaction, bond length variations were observed, with CH2N2@MgO exhibiting shorter bonds and CH2N2@YMgO showcasing longer bonds. Meanwhile, CH2N2@ZrMgO displayed shorter bonds, except for a longer bond in Mg19-O4, suggesting increased stability due to shorter bond distances. The study further investigated the electronic properties, revealing changes in the energy gap that influenced electrical conductivity and sensitivity. The energy gap increased for Zr@MgO, CH2N2@MgO, CH2N2@YMgO, and CH2N2@ZrMgO, indicating weak interactions on the MgO surface. Conversely, Y@MgO showed a decrease in energy, suggesting a strong interaction. The pure MgO surface exhibited the ability to donate and accept electrons, resulting in an energy gap of 4.799 eV. Surfaces decorated with yttrium and zirconium exhibited decreased energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), as well as decreased energy gap, indicating increased conductivity and sensitivity. Notably, Zr@MgO had the highest energy gap before CH2N2 adsorption, but C1 exhibited a significantly higher energy gap after adsorption, implying increased conductivity and sensitivity. The study also examined the density of states, demonstrating significant variations in the electronic properties of MgO and its decorated surfaces due to CH2N2 adsorption. Moreover, various analysis techniques were employed, including natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM), and noncovalent interaction (NCI) analysis, which provided insights into bonding, charge density, and intermolecular interactions. The findings contribute to a deeper understanding of the sensing mechanisms of CH2N2 gas on nanocage surfaces, shedding light on adsorption energy, conductivity, and recovery time. These results hold significance for gas-sensing applications and provide a basis for further exploration and development in this field.

4.
ACS Omega ; 8(11): 10242-10252, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36969470

ABSTRACT

Rhenium complexes have been observed experimentally to exhibit good inhibitory activity against malignant cells. Hence, our motivation is to explore this activity from a theoretical perspective. In the present study, density functional theory (DFT) and in silico molecular docking approaches were utilized to unravel the unique properties of metal-based rhenium tricarbonyl complexes as effective anticancer drugs. All DFT calculations and geometric optimizations were conducted using the well-established hybrid functional B3LYP-GD(BJ)/Gen/6-311++G(d,p)/LanL2DZ computational method. The FT-IR spectroscopic characterization of the complexes: fac-[Re(Pico)(CO)3(Pz)] (R1), fac-[Re(Pico)(CO)3(Py)] (R2), fac-[Re(Dfpc)(CO)3(H2O)] (R3), fac-[Re(Dfpc)(CO)3(Pz)] (R4), fac-[Re(Dfpc)(CO)3(Py)] (R5), fac-[Re(Tfpc)(CO)3(H2O)] (R6), fac-[Re(Tfpc)(CO)3(Py)] (R7), and fac-[Re(Tfpc)(CO)3(Im)] (R8) was explored. To gain insights into the electronic structural properties, bioactivity, and stability of these complexes, the highest occupied molecular orbital-lowest unoccupied molecular orbital analysis, binding energy, and topological analysis based on quantum theory of atoms-in-molecules were considered. The anticancer activities of the complexes were measured via in silico molecular docking against human BCL-2 protein (IG5M) and proapoptotic (agonist) BAX 1 protein (450O). The results showed that the studied complexes exhibited good binding affinity (-3.25 to -10.16 kcal/mol) and could cause significant disruption of the normal physiological functions of the studied proteins. The results of DFT calculations also showed that the studied complexes exhibited good stability and are suitable candidates for the development of anticancer agents.

5.
ACS Omega ; 7(50): 46183-46202, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36570229

ABSTRACT

This study focused on the potential of aluminum nitride (Al12N12) and aluminum phosphide (Al12P12) nanomaterials as anode electrodes of lithium-ion (Li-ion), sodium-ion (Na-ion), and potassium-ion (K-ion) batteries as investigated via density functional theory (DFT) calculations at PBE0-D3, M062X-D3, and DSDPBEP86 as the reference method. The results show that the Li-ion battery has a higher cell voltage with a binding energy of -1.210 eV and higher reduction potential of -6.791 kcal/mol compared to the sodium and potassium ion batteries with binding energies of -0.749 and -0.935 eV and reduction potentials of -6.414 and -6.513 kcal/mol, respectively, using Al12N12 material. However, in Al12P12, increases in the binding energy and reduction potential were observed in the K-ion battery with values -1.485 eV and -7.535 kcal/mol higher than the Li and Na ion batteries with binding energy and reduction potential -1.483, -1.311 eV and -7.071, -7.184 eV, respectively. Finally, Al12N12 and Al12P12 were both proposed as novel anode electrodes in Li-ion and K-ion batteries with the highest performances.

6.
ACS Omega ; 7(39): 35118-35135, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36211036

ABSTRACT

Upon various investigations conducted in search for a nanosensor material with the best sensing performance, the need to explore these materials cannot be overemphasized as materials associated with best sensing attributes are of vast interest to researchers. Hence, there is a need to investigate the adsorption performances of various metal-doped fullerene surfaces: C59Au, C59Hf, C59Hg, C59Ir, C59Os, C59Pt, C59Re, and C59W on thiourea [SC(NH2)2] molecule using first-principles density functional theory computation. Comparative adsorption study has been carried out on various adsorption models of four functionals, M06-2X, M062X-D3, PBE0-D3, and ωB97XD, and two double-hybrid (DH) functionals, DSDPBEP86 and PBE0DH, as reference at Gen/def2svp/LanL2DZ. The visual study of weak interactions such as quantum theory of atoms in molecule analysis and noncovalent interaction analysis has been invoked to ascertain these results, and hence we arrived at a conclusive scientific report. In all cases, the weak adsorption observed is best described as physisorption phenomena, and CH4N2S@C59Pt complex exhibits better sensing attributes than its studied counterparts in the interactions between thiourea molecule and transition metal-doped fullerene surfaces. Also, in the comparative adsorption study, DH density functionals show better performance in estimating the adsorption energies due to their reduced mean absolute deviation (MAD) and root-mean-square deviation (RMSD) values of (MAD = 1.0305, RMSD = 1.6277) and (MAD = 0.9965, RMSD = 1.6101) in DSDPBEP86 and PBE0DH, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...