Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
J Appl Microbiol ; 133(6): 3558-3572, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36000385

ABSTRACT

AIMS: Antimicrobial resistance is one of the highest priorities in global public health with Staphylococcus aureus among the most important microorganisms due to its rapidly evolving antimicrobial resistance. Despite all the efforts of antimicrobial stewardship, research and development of new antimicrobials are still imperative. The thiazolidine ring is considered a privileged structure for the development of new antimicrobials. This study aimed to compare the antibacterial effects of two analogue series of thiazolidine-2,4-dione and 4-thioxo-thiazolidin-2-one against multidrug-resistant Staph. aureus clinical isolates. METHODS AND RESULTS: The derivatives 1a, 2a and 2b exhibited MIC between 1-32 µg ml-1 , with time-to-kill curves showing a bactericidal effect up to 24 h. In the antibiofilm assay, the most active derivatives were able to inhibit about 90% of biofilm formation. The 4-thioxo-thiazolidine-2-one derivatives were more active against planktonic cells, while the thiazolidine-2,4-dione derivatives were able to disrupt about 50% of the preformed biofilm. In the in vivo infection model using Caenorhabditis elegans as a host, the derivatives 1a, 2a and 2b increased nematode survival with a concentration-dependent effect. Exposure of Staph. aureus to the derivatives 2a and 2b induced surface changes and decrease cell size. None of the derivatives was cytotoxic for human peripheral blood mononuclear cells (PBMC) but showed moderate cytotoxicity for L929 fibroblasts. CONCLUSION: The 5-(3,4-dichlorobenzylidene)-4-thioxothiazolidin-2-one (2b) was the most active derivative against Staph. aureus and showed higher selective indices. SIGNIFICANCE AND IMPACT OF THE STUDY: 4-thioxo-thiazolidin-2-one is a promising scaffold for the research and development of new antimicrobial drugs against multidrug-resistant Staph. aureus.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Thiazolidines/pharmacology , Thiazolidines/chemistry , Microbial Sensitivity Tests , Leukocytes, Mononuclear , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms , Anti-Infective Agents/pharmacology
2.
Front Mol Biosci ; 9: 887763, 2022.
Article in English | MEDLINE | ID: mdl-35712354

ABSTRACT

The rapid development of multidrug-resistant pathogens against conventional antibiotics is a global public health problem. The irrational use of antibiotics has promoted therapeutic limitations against different infections, making research of new molecules that can be applied to treat infections necessary. Antimicrobial peptides (AMPs) are a class of promising antibiotic molecules as they present broad action spectrum, potent activity, and do not easily induce resistance. Several AMPs from scorpion venoms have been described as a potential source for the development of new drugs; however, some limitations to their application are also observed. Here, we describe strategies used in several approaches to optimize scorpion AMPs, addressing their primary sequence, biotechnological potential, and characteristics that should be considered when developing an AMP derived from scorpion venoms. In addition, this review may contribute towards improving the understanding of rationally designing new molecules, targeting functional AMPs that may have a therapeutic application.

3.
Sci Rep ; 11(1): 11200, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045624

ABSTRACT

Chagas disease is caused by Trypanosoma cruzi and affects thousands of people. Drugs currently used in therapy are toxic and have therapeutic limitations. In addition, the genetic diversity of T. cruzi represents an important variable and challenge in treatment. Sodium diethyldithiocarbamate (DETC) is a compound with pharmacological versatility acting as metal chelators and ROS generation. Thus, the objective was to characterize the antiparasitic action of DETC against different strains and forms of T. cruzi and their mechanism. The different strains of T. cruzi were grown in LIT medium. To evaluate the antiparasitic activity of DETC, epimastigote and trypomastigote forms of T. cruzi were used by resazurin reduction methods and by counting. Different response patterns were obtained between the strains and an IC50 of DETC ranging from 9.44 ± 3,181 to 60.49 ± 7.62 µM. Cell cytotoxicity against 3T3 and RAW cell lines and evaluated by MTT, demonstrated that DETC in high concentration (2222.00 µM) presents low toxicity. Yet, DETC causes mitochondrial damage in T. cruzi, as well as disruption in parasite membrane. DETC has antiparasitic activity against different genotypes and forms of T. cruzi, therefore, representing a promising molecule as a drug for the treatment of Chagas disease.


Subject(s)
Chagas Disease/parasitology , Ditiocarb/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects
4.
Front Microbiol ; 12: 613155, 2021.
Article in English | MEDLINE | ID: mdl-33692765

ABSTRACT

Commiphora leptophloeos (Burseraceae) is a medicinal plant native to Brazil which is popularly used for treating oral and vaginal infections. There has been no scientific evidence pointing to its efficacy in the treatment of these infections. Thus, this study sought to investigate the cytotoxic, antifungal, and antibiofilm activity of C. leptophloeos against Candida spp. and to isolate, identify, and quantify the content of B-type oligomeric procyanidins (BDP) in the extract of C. leptophloeos stem bark. The extract and the n-butanol fraction were obtained by maceration and liquid-liquid partition, respectively. Phytochemical analysis performed by HPLC-PDA/ELSD and FIA-ESI-IT-MS/MS allowed the identification and quantification of BDP in the samples. The application of centrifugal partition chromatography helped isolate BDP, which was identified by 1H NMR and MS analyses. Candida spp. reference strains and clinical isolates (including fluconazole-resistant strains) derived from the blood cultures of candidemic patients and the vaginal secretion of patients with vulvovaginal candidiasis were used for evaluating the antifungal and antibiofilm effects. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were determined by the microdilution technique, and biofilm inhibition was evaluated through crystal violet and XTT assays. The combined action of BDP with fluconazole was determined by the checkerboard method. The extract, the n-butanol fraction, and the BDP exhibited antifungal activity with MIC values ranging from 312.5 to 2500 µg/mL and were found to significantly reduce the biofilm formed in all the Candida strains investigated. BDP showed a fungicidal potential against strains of Candida spp. (especially against fluconazole-resistant strains), with MIC and MFC values ranging from 156.2 to 2500 µg/mL. In addition, the combined application of BDP and fluconazole produced synergistic antifungal effects against resistant Candida spp. (FICI = 0.31-1.5). The cytotoxic properties of the samples evaluated in human erythrocytes through hemolytic test did not show hemolytic activity under active concentrations. The findings of the study show that C. leptophloeos has antifungal and antibiofilm potential but does not cause toxicity in human erythrocytes. Finally, BDP, which was isolated for the first time in C. leptophloeos, was found to exhibit antifungal effect against Candida spp. either when applied alone or in combination with fluconazole.

5.
Int J Mol Sci ; 20(3)2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30709056

ABSTRACT

Scorpion venom constitutes a rich source of biologically active compounds with high potential for therapeutic and biotechnological applications that can be used as prototypes for the design of new drugs. The aim of this study was to characterize the structural conformation, evaluate the antimicrobial activity, and gain insight into the possible action mechanism underlying it, for two new analog peptides of the scorpion peptide Stigmurin, named StigA25 and StigA31. The amino acid substitutions in the native sequence for lysine residues resulted in peptides with higher positive net charge and hydrophobicity, with an increase in the theoretical helical content. StigA25 and StigA31 showed the capacity to modify their structural conformation according to the environment, and were stable to pH and temperature variation-results similar to the native peptide. Both analog peptides demonstrated broad-spectrum antimicrobial activity in vitro, showing an effect superior to that of the native peptide, being non-hemolytic at the biologically active concentrations. Therefore, this study demonstrates the therapeutic potential of the analog peptides from Stigmurin and the promising approach of rational drug design based on scorpion venom peptide to obtain new anti-infective agents.


Subject(s)
Amino Acid Substitution , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Gram-Positive Bacteria/drug effects , Scorpion Venoms/genetics , Trypanosoma cruzi/drug effects , Animals , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Circular Dichroism , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Models, Molecular , Molecular Dynamics Simulation , Protein Stability , Protein Structure, Secondary , Scorpion Venoms/chemistry , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology
6.
Int J Mol Sci, v. 20, n. 3, 623, fev. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2716

ABSTRACT

Scorpion venom constitutes a rich source of biologically active compounds with high potential for therapeutic and biotechnological applications that can be used as prototypes for the design of new drugs. The aim of this study was to characterize the structural conformation, evaluate the antimicrobial activity, and gain insight into the possible action mechanism underlying it, for two new analog peptides of the scorpion peptide Stigmurin, named StigA25 and StigA31. The amino acid substitutions in the native sequence for lysine residues resulted in peptides with higher positive net charge and hydrophobicity, with an increase in the theoretical helical content. StigA25 and StigA31 showed the capacity to modify their structural conformation according to the environment, and were stable to pH and temperature variationresults similar to the native peptide. Both analog peptides demonstrated broad-spectrum antimicrobial activity in vitro, showing an effect superior to that of the native peptide, being non-hemolytic at the biologically active concentrations. Therefore, this study demonstrates the therapeutic potential of the analog peptides from Stigmurin and the promising approach of rational drug design based on scorpion venom peptide to obtain new anti-infective agents.

7.
Int J Mol Sci ; v. 20(n. 3): 623, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15927

ABSTRACT

Scorpion venom constitutes a rich source of biologically active compounds with high potential for therapeutic and biotechnological applications that can be used as prototypes for the design of new drugs. The aim of this study was to characterize the structural conformation, evaluate the antimicrobial activity, and gain insight into the possible action mechanism underlying it, for two new analog peptides of the scorpion peptide Stigmurin, named StigA25 and StigA31. The amino acid substitutions in the native sequence for lysine residues resulted in peptides with higher positive net charge and hydrophobicity, with an increase in the theoretical helical content. StigA25 and StigA31 showed the capacity to modify their structural conformation according to the environment, and were stable to pH and temperature variationresults similar to the native peptide. Both analog peptides demonstrated broad-spectrum antimicrobial activity in vitro, showing an effect superior to that of the native peptide, being non-hemolytic at the biologically active concentrations. Therefore, this study demonstrates the therapeutic potential of the analog peptides from Stigmurin and the promising approach of rational drug design based on scorpion venom peptide to obtain new anti-infective agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...