Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 13(9): 931-943, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29655285

ABSTRACT

With the discovery that serine hydroxymethyltransferase (SHMT) is a druggable target for antimalarials, the aim of this study was to design novel inhibitors of this key enzyme in the folate biosynthesis cycle. Herein, 19 novel spirocyclic ligands based on either 2-indolinone or dihydroindene scaffolds and featuring a pyrazolopyran core are reported. Strong target affinities for Plasmodium falciparum (Pf) SHMT (14-76 nm) and cellular potencies in the low nanomolar range (165-334 nm) were measured together with interesting selectivity against human cytosolic SHMT1 (hSHMT1). Four co-crystal structures with Plasmodium vivax (Pv) SHMT solved at 2.2-2.4 Šresolution revealed the key role of the vinylogous cyanamide for anchoring ligands within the active site. The spirocyclic motif in the molecules enforces the pyrazolopyran core to adopt a substantially more curved conformation than that of previous non-spirocyclic analogues. Finally, solvation of the spirocyclic lactam ring of the receptor-bound ligands is discussed.


Subject(s)
Enzyme Inhibitors/pharmacology , Glycine Hydroxymethyltransferase/antagonists & inhibitors , Indenes/pharmacology , Oxindoles/pharmacology , Plasmodium/drug effects , Spiro Compounds/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glycine Hydroxymethyltransferase/metabolism , Humans , Indenes/chemical synthesis , Indenes/chemistry , Ligands , Models, Molecular , Molecular Structure , Oxindoles/chemical synthesis , Oxindoles/chemistry , Parasitic Sensitivity Tests , Plasmodium/enzymology , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
2.
Arch Biochem Biophys ; 630: 91-100, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28760597

ABSTRACT

Serine hydroxymethyltransferase (SHMT), an essential enzyme for cell growth and development, catalyzes the transfer of -CH2OH from l-serine to tetrahydrofolate (THF) to form glycine and 5,10-methylenetetrahydrofolate (MTHF) which is used for nucleotide synthesis. Insights into the ligand binding and inhibition properties of human cytosolic SHMT (hcSHMT) and Plasmodium SHMT (PvSHMT) are crucial for designing specific drugs against malaria and cancer. The results presented here revealed strong and pH-dependent THF inhibition of hcSHMT. In contrast, in PvSHMT, THF inhibition and the influence of pH were not as pronounced. Ligand binding experiments performed at various pH values indicated that the hcSHMT:Gly complex binds THF more tightly at lower pH conditions, while the binding affinity of the PvSHMT:Gly complex for THF is not pH-dependent. Pre-steady state kinetic (rapid-quench) analysis of hcSHMT showed burst kinetics, indicating that glycine formation occurs fastest in the first turnover relative to the subsequent turnovers i.e. glycine release is the rate-limiting step in the hcSHMT reaction. All data suggest that excess THF likely binds E:Gly binary complex and forms the E:Gly:THF dead-end complex before glycine is released. A unique flap motif found in the structure of hcSHMT may be the key structural feature that imparts these described characteristics of hcSHMT.


Subject(s)
Enzyme Inhibitors/chemistry , Glycine Hydroxymethyltransferase/antagonists & inhibitors , Glycine Hydroxymethyltransferase/chemistry , Plasmodium falciparum/enzymology , Plasmodium vivax/enzymology , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Amino Acid Motifs , Humans , Hydrogen-Ion Concentration , Species Specificity
3.
J Biol Chem ; 290(13): 8656-65, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25678710

ABSTRACT

Serine hydroxymethyltransferase (SHMT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes a hydroxymethyl group transfer from L-serine to tetrahydrofolate (H4folate) to yield glycine and 5,10-methylenetetrahydrofolate (CH2-H4folate). SHMT is crucial for deoxythymidylate biosynthesis and a target for antimalarial drug development. Our previous studies indicate that PvSHMT catalyzes the reaction via a ternary complex mechanism. To define the kinetic mechanism of this catalysis, we explored the PvSHMT reaction by employing various methodologies including ligand binding, transient, and steady-state kinetics as well as product analysis by rapid-quench and HPLC/MS techniques. The results indicate that PvSHMT can bind first to either L-serine or H4folate. The dissociation constants for the enzyme·L-serine and enzyme·H4folate complexes were determined as 0.18 ± 0.08 and 0.35 ± 0.06 mM, respectively. The amounts of glycine formed after single turnovers of different preformed binary complexes were similar, indicating that the reaction proceeds via a random-order binding mechanism. In addition, the rate constant of glycine formation measured by rapid-quench and HPLC/MS analysis is similar to the kcat value (1.09 ± 0.05 s(-1)) obtained from the steady-state kinetics, indicating that glycine formation is the rate-limiting step of SHMT catalysis. This information will serve as a basis for future investigation on species-specific inhibition of SHMT for antimalarial drug development.


Subject(s)
Glycine Hydroxymethyltransferase/chemistry , Plasmodium vivax/enzymology , Protozoan Proteins/chemistry , Serine/chemistry , Folic Acid/chemistry , Glycine , Hydrogen-Ion Concentration , Kinetics , Protein Binding , Thermodynamics
4.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1517-27, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24914963

ABSTRACT

Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT), an enzyme in the dTMP synthesis cycle, is an antimalarial target because inhibition of its expression or function has been shown to be lethal to the parasite. As the wild-type enzyme could not be crystallized, protein engineering of residues on the surface was carried out. The surface-engineered mutant PfSHMT-F292E was successfully crystallized and its structure was determined at 3 Šresolution. The PfSHMT-F292E structure is a good representation of PfSHMT as this variant revealed biochemical properties similar to those of the wild type. Although the overall structure of PfSHMT is similar to those of other SHMTs, unique features including the presence of two loops and a distinctive cysteine pair formed by Cys125 and Cys364 in the tetrahydrofolate (THF) substrate binding pocket were identified. These structural characteristics have never been reported in other SHMTs. Biochemical characterization and mutation analysis of these two residues confirm that they act as a disulfide/sulfhydryl switch to regulate the THF-dependent catalytic function of the enzyme. This redox switch is not present in the human enzyme, in which the cysteine pair is absent. The data reported here can be further exploited as a new strategy to specifically disrupt the activity of the parasite enzyme without interfering with the function of the human enzyme.


Subject(s)
Glycine Hydroxymethyltransferase/chemistry , Plasmodium falciparum/enzymology , Amino Acid Sequence , Animals , Crystallization , Models, Molecular , Molecular Sequence Data , Oxidation-Reduction , Sequence Homology, Amino Acid , Spectrophotometry, Ultraviolet , Structure-Activity Relationship , X-Ray Diffraction
5.
FEBS J ; 281(11): 2570-83, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24698160

ABSTRACT

UNLABELLED: Serine hydroxymethyltransferase (SHMT) catalyzes the transfer of a hydroxymethyl group from l-serine to tetrahydrofolate to yield glycine and 5,10-methylenetetrahydrofolate. Our previous investigations have shown that SHMTs from Plasmodium spp. (P. falciparum, Pf; P. vivax, Pv) are different from the enzyme from rabbit liver in that Plasmodium SHMT can use d-serine as a substrate. In this report, the biochemical and biophysical properties of the Plasmodium and the human cytosolic form (hcSHMT) enzymes including ligand binding and kinetics were investigated. The data indicate that, similar to Plasmodium enzymes, hcSHMT can use d-serine as a substrate. However, hcSHMT displays many properties that are different from those of the Plasmodium enzymes. The molar absorption coefficient of hcSHMT-bound pyridoxal-5'-phosphate (PLP) is much greater than PvSHMT-bound or PfSHMT-bound PLP. The binding interactions of hcSHMT and Plasmodium SHMT with d-serine are different, as only the Plasmodium enzyme undergoes formation of a quinonoid-like species upon binding to d-serine. Furthermore, it has been noted that hcSHMT displays strong substrate inhibition by tetrahydrofolate (THF) (at THF > 40 µm), compared with SHMTs from Plasmodium and other species. The pH-activity profile of hcSHMT shows higher activities at lower pH values corresponding to a pKa value of 7.8 ± 0.1. Thiosemicarbazide reacts with hcSHMT following a one-step model [k1 of 12 ± 0.6 m(-1) ·s(-1) and k-1 of (1.0 ± 0.6) × 10(-3) s(-1) ], while the same reaction with PfSHMT involves at least three steps. All data indicated that the ligand binding environment of SHMT from human and Plasmodium are different, indicating that it should be possible to develop species-selective inhibitors in future studies. DATABASE: serine hydroxymethyltransferase, EC 2.1.2.1; 5,10-methylenetetrahydrofolate dehydrogenase, EC 1.5.1.5.


Subject(s)
Glycine Hydroxymethyltransferase/metabolism , Plasmodium/enzymology , Animals , Glycine Hydroxymethyltransferase/genetics , Humans , Pyridoxal Phosphate/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...