Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Appl Physiol Nutr Metab ; 47(9): 933-948, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35700525

ABSTRACT

Cancer cachexia (CC) accounts for 20%-40% of cancer-related deaths. Mitochondrial aberrations have been shown to precede muscle atrophy in different atrophy models, including cancer. Therefore, this study investigated potential protection from the cachectic phenotype through overexpression of peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α). First, to establish potential of mitochondria-based approaches we showed that the mitochondrial antioxidant MitoTEMPO (MitoT) attenuates myotube atrophy induced by Lewis lung carcinoma (LLC) cell conditioned media. Next, cachexia was induced in muscle-specific PGC-1α overexpressing (MCK-PCG1α) or wildtype (WT) littermate mice by LLC implantation. MCK-PCG1α did not protect LLC-induced muscle mass loss. In plantaris, Atrogin mRNA content was 6.2-fold and ∼11-fold greater in WT-LLC vs WT-phosphate-buffered saline (PBS) for males and females, respectively (p < 0.05). MitoTimer red:green ratio for male PGC was ∼65% higher than WT groups (p < 0.05), with ∼3-fold more red puncta in LLC than PBS (p < 0.05). Red:green ratio was ∼56% lower in females WT-LLC vs PGC-LLC (p < 0.05). In females, no change in red puncta was noted across conditions. Lc3 mRNA content was ∼73% and 2-fold higher in male and female LLC mice, respectively, vs PBS (p < 0.05). While MitoT could mitigate cancer-induced atrophy in vitro, PGC-1α overexpression was insufficient to protect muscle mass and mitochondrial health in vivo despite mitigation of cachexia-associated signaling pathways.


Subject(s)
Carcinoma, Lewis Lung , Muscular Diseases , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Cachexia/etiology , Cachexia/prevention & control , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/metabolism , Female , Male , Mice , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Muscular Diseases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , RNA, Messenger/metabolism
2.
J Appl Physiol (1985) ; 129(6): 1290-1303, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32940556

ABSTRACT

Muscle atrophy is a significant moderator for disease prognosis; as such, interventions to mitigate disuse-induced muscle loss are imperative to improve clinical interventions. Mitochondrial deteriorations may underlie disuse-induced myopathies; therefore, improving mitochondrial quality may be an enticing therapeutic intervention. However, different mitochondria-based treatments may have divergent impacts on the prognosis of disuse atrophy. Therefore, the purpose of this study was to investigate different mitochondria-centered interventions during disuse atrophy in hindlimb unloaded male and female mice. Male and female mice overexpressing peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) or mitochondrially targeted catalase (MCAT) and their respective wild-type (WT) littermate controls were hindlimb unloaded for 7 days to induce disuse atrophy or allowed normal ambulatory activity (cage control; CON). After designated interventions, animals were euthanized, and tissues were collected for measures of mitochondrial quality control and protein turnover. Although PGC-1α overexpression mitigated ubiquitin-proteasome activation (MuRF1 and Atrogin mRNA content), this did not correspond to phenotypic protections from disuse-induced atrophy. Rather, PGC-1α mice appeared to have a greater reliance on autophagic protein breakdown compared with WT mice. In MCAT mice, females exhibited a mitigated response to disuse atrophy; however, this effect was not noted in males. Despite these phenotypic differences, there were no clear cellular signaling differences between MCAT hindlimb unloaded females and MCAT fully loaded females. PGC-1α overexpression does not protect against phenotypic alterations during disuse atrophy but appears to shift catabolic pathways moderating atrophy. However, increased mitochondrially targeted catalase activity appears to blunt disuse atrophy within highly oxidative muscles specifically in female mice.NEW & NOTEWORTHY We present data suggesting that mitochondria-based interventions may mitigate disuse atrophy. However, the efficacy of mitochondria-based interventions may vary depending on the specific target of the intervention and the sex of the organism. Females appear to be more responsive to increased mitochondrial catalase as a potential therapeutic for mitigating disuse atrophy.


Subject(s)
Muscle, Skeletal , Muscular Disorders, Atrophic , Animals , Female , Hindlimb Suspension , Male , Mice , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Muscular Disorders, Atrophic/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...