Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Oncol (R Coll Radiol) ; 33(3): e118-e131, 2021 03.
Article in English | MEDLINE | ID: mdl-32798157

ABSTRACT

AIMS: Twenty per cent of patients with non-small cell lung cancer present with stage III locally advanced disease. Precision radiotherapy with pencil beam scanning (PBS) protons may improve outcomes. However, stage III is a heterogeneous group and accounting for complex tumour motion is challenging. As yet, it remains unclear as to whom will benefit. In our retrospective planning study, we explored if patients with superior sulcus tumours (SSTs) are a select cohort who might benefit from this treatment. MATERIALS AND METHODS: Patients with SSTs treated with radical radiotherapy using four-dimensional planning computed tomography between 2010 and 2015 were identified. Tumour motion was assessed and excluded if greater than 5 mm. Photon volumetric-modulated arc therapy (VMAT) and PBS proton single-field optimisation plans, with and without inhomogeneity corrections, were generated retrospectively. Robustness analysis was assessed for VMAT and PBS plans involving: (i) 5 mm geometric uncertainty, with an additional 3.5% range uncertainty for proton plans; (ii) verification plans at maximal inhalation and exhalation. Comparative dosimetric and robustness analyses were carried out. RESULTS: Ten patients were suitable. The mean clinical target volume D95 was 98.1% ± 0.4 (97.5-98.8) and 98.4% ± 0.2 (98.1-98.9) for PBS and VMAT plans, respectively. All normal tissue tolerances were achieved. The same four PBS and VMAT plans failed robustness assessment. Inhomogeneity corrections minimally impacted proton plan robustness and made it worse in one case. The most important factor affecting target coverage and robustness was the clinical target volume entering the spinal canal. Proton plans significantly reduced the mean lung dose (by 21.9%), lung V5, V10, V20 (by 47.9%, 36.4%, 12.1%, respectively), mean heart dose (by 21.4%) and thoracic vertebra dose (by 29.2%) (P < 0.05). CONCLUSIONS: In this planning study, robust PBS plans were achievable in carefully selected patients. Considerable dose reductions to the lung, heart and thoracic vertebra were possible without compromising target coverage. Sparing these lymphopenia-related organs may be particularly important in this era of immunotherapy.


Subject(s)
Lung Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Organs at Risk , Protons , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Retrospective Studies
2.
Clin Oncol (R Coll Radiol) ; 32(7): 459-466, 2020 07.
Article in English | MEDLINE | ID: mdl-32307206

ABSTRACT

In the UK, the recent introduction of high-energy proton beam therapy into national clinical practice provides an opportunity for new clinical trials, particularly those comparing proton and photon treatments. However, comparing these different modalities can present many challenges. Although protons may confer an advantage in terms of reduced normal tissue dose, they can also be more sensitive to uncertainty. Uncertainty analysis is fundamental in ensuring that proton plans are both safe and effective in the event of unavoidable discrepancies, such as variations in patient setup and proton beam range. Methods of evaluating and mitigating the effect of these uncertainties can differ from those approaches established for photon therapy treatments, such as the use of expansion margins to assure safety. These differences should be considered when comparing protons and photons. An overview of the effect of uncertainties on proton plans is presented together with an introduction to some of the concepts and terms that should become familiar to those involved in proton therapy trials. This report aims to provide guidance for those engaged in UK clinical trials comparing protons and photons. This guidance is intended to take a pragmatic approach considering the tools that are available to practising centres and represents a consensus across multidisciplinary groups involved in proton therapy in the UK.


Subject(s)
Clinical Trials as Topic/standards , Nasopharyngeal Neoplasms/radiotherapy , Organs at Risk/radiation effects , Photons/therapeutic use , Practice Guidelines as Topic/standards , Protons , Radiotherapy Planning, Computer-Assisted/methods , Consensus , Humans , Nasopharyngeal Neoplasms/diagnostic imaging , Nasopharyngeal Neoplasms/pathology , Organs at Risk/diagnostic imaging , Radiotherapy Dosage , Tomography, X-Ray Computed , Uncertainty , United Kingdom
3.
Acta Oncol ; 58(12): 1765-1774, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31429359

ABSTRACT

Purpose: Pediatric craniopharyngioma, adult base-of-skull sarcoma and chordoma cases are all regarded as priority candidates for proton therapy. In this study, a dosimetric comparison between volumetric modulated arc therapy (VMAT) and intensity modulated proton therapy (IMPT) was first performed. We then investigated the impact of physical and biological uncertainties. We assessed whether IMPT plans remained dosimetrically superior when such uncertainty estimates were considered, especially with regards to sparing organs at risk (OARs).Methodology: We studied 10 cases: four chondrosarcoma, two chordoma and four pediatric craniopharyngioma. VMAT and IMPT plans were created according to modality-specific protocols. For IMPT, we considered (i) variable RBE modeling using the McNamara model for different values of (α/ß)x, and (ii) robustness analysis with ±3 mm set-up and 3.5% range uncertainties.Results: When comparing the VMAT and IMPT plans, the dosimetric advantages of IMPT were clear: IMPT led to reduced integral dose and, typically, improved CTV coverage given our OAR constraints. When physical robustness analysis was performed for IMPT, some uncertainty scenarios worsened the CTV coverage but not usually beyond that achieved by VMAT. Certain scenarios caused OAR constraints to be exceeded, particularly for the brainstem and optical chiasm. However, variable RBE modeling predicted even more substantial hotspots, especially for low values of (α/ß)x. Variable RBE modeling often prompted dose constraints to be exceeded for critical structures.Conclusion: For base-of-skull and pediatric craniopharyngioma cases, both physical and biological robustness analyses should be considered for IMPT: these analyses can substantially affect the sparing of OARs and comparisons against VMAT. All proton RBE modeling is subject to high levels of uncertainty, but the clinical community should remain cognizant possible RBE effects. Careful clinical and imaging follow-up, plus further research on end-of-range RBE mitigation strategies such as LET optimization, should be prioritized for these cohorts of proton patients.


Subject(s)
Chordoma/radiotherapy , Craniopharyngioma/radiotherapy , Organs at Risk/radiation effects , Pituitary Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Sarcoma/radiotherapy , Skull Base Neoplasms/radiotherapy , Adult , Brain Stem/radiation effects , Child , Humans , Linear Energy Transfer , Optic Chiasm/radiation effects , Optic Nerve/radiation effects , Radiation Injuries/prevention & control , Radiotherapy Dosage , Relative Biological Effectiveness , Uncertainty
4.
Clin Oncol (R Coll Radiol) ; 30(6): 346-353, 2018 06.
Article in English | MEDLINE | ID: mdl-29483041

ABSTRACT

AIMS: Radiotherapy target volumes in early breast cancer treatment increasingly include the internal mammary chain (IMC). In order to maximise survival benefits of IMC radiotherapy, doses to the heart and lung should be minimised. This dosimetry study compared the ability of three-dimensional conformal radiotherapy, arc therapy and proton beam therapy (PBT) techniques with and without breath-hold to achieve target volume constraints while minimising dose to organs at risk (OARs). MATERIALS AND METHODS: In 14 patients' datasets, seven IMC radiotherapy techniques were compared: wide tangent (WT) three-dimensional conformal radiotherapy, volumetric-modulated arc therapy (VMAT) and PBT, each in voluntary deep inspiratory breath-hold (vDIBH) and free breathing (FB), and tomotherapy in FB only. Target volume coverage and OAR doses were measured for each technique. These were compared using a one-way ANOVA with all pairwise comparisons tested using Bonferroni's multiple comparisons test, with adjusted P-values ≤ 0.05 indicating statistical significance. RESULTS: One hundred per cent of WT(vDIBH), 43% of WT(FB), 100% of VMAT(vDIBH), 86% of VMAT(FB), 100% of tomotherapy FB and 100% of PBT plans in vDIBH and FB passed all mandatory constraints. However, coverage of the IMC with 90% of the prescribed dose was significantly better than all other techniques using VMAT(vDIBH), PBT(vDIBH) and PBT(FB) (mean IMC coverage ± 1 standard deviation = 96.0% ± 4.3, 99.8% ± 0.3 and 99.0% ± 0.2, respectively). The mean heart dose was significantly reduced in vDIBH compared with FB for both the WT (P < 0.0001) and VMAT (P < 0.0001) techniques. There was no advantage in target volume coverage or OAR doses for PBT(vDIBH) compared with PBT(FB). CONCLUSIONS: Simple WT radiotherapy delivered in vDIBH achieves satisfactory coverage of the IMC while meeting heart and lung dose constraints. However, where higher isodose coverage is required, VMAT(vDIBH) is the optimal photon technique. The lowest OAR doses are achieved by PBT, in which the use of vDIBH does not improve dose statistics.


Subject(s)
Breast Neoplasms/radiotherapy , Breast/diagnostic imaging , Lymph Nodes/radiation effects , Breast/pathology , Breast Neoplasms/pathology , Female , Humans , Middle Aged , Radiometry/methods
5.
Br J Radiol ; 86(1029): 20130176, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23728947

ABSTRACT

OBJECTIVE: Passive scattering proton beam (PSPB) radiotherapy for accelerated partial-breast irradiation (APBI) provides superior dosimetry for APBI three-dimensional conformal photon radiotherapy (3DCRT). Here we examine the potential incremental benefit of intensity-modulated proton radiotherapy (IMPT) for APBI and compare its dosimetry with PSPB and 3DCRT. METHODS: Two theoretical IMPT plans, TANGENT_PAIR and TANGENT_ENFACE, were created for 11 patients previously treated with 3DCRT APBI and were compared with PSPB and 3DCRT plans for the same CT data sets. The impact of range, motion and set-up uncertainties as well as scanned spot mismatching between fields of IMPT plans was evaluated. RESULTS: IMPT plans for APBI were significantly better regarding breast skin sparing (p<0.005) and other normal tissue sparing than 3DCRT plans (p<0.01) with comparable target coverage (p=ns). IMPT plans were statistically better than PSPB plans regarding breast skin (p<0.002) and non-target breast (p<0.007) in higher dose regions but worse or comparable in lower dose regions. IMPT plans using TANGENT_ENFACE were superior to that using TANGENT_PAIR in terms of target coverage (p<0.003) and normal tissue sparing (p<0.05) in low-dose regions. IMPT uncertainties were demonstrated for multiple causes. Qualitative comparison of dose-volume histogram confidence intervals for IMPT suggests that numeric gains may be offset by IMPT uncertainties. CONCLUSION: Using current clinical dosimetry, PSPB provides excellent dosimetry compared with 3DCRT with fewer uncertainties compared with IMPT. ADVANCES IN KNOWLEDGE: As currently delivered in the clinic, PSPB planning for APBI provides as good or better dosimetry than IMPT with less uncertainty.


Subject(s)
Breast Neoplasms/radiotherapy , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated , Female , Humans , Photons/therapeutic use , Proton Therapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
6.
J Biomater Appl ; 6(2): 131-56, 1991 Oct.
Article in English | MEDLINE | ID: mdl-1779411

ABSTRACT

Biomaterials are being used with increasing frequency for tissue substitution. Implantable, prosthetic devices are instrumental in the saving of patients' lives and enhancing the quality of life for many others. However, the greatest barrier to expanding the use of biomedical devices is the high probability of bacterial adherence and proliferation, causing very difficult and often untreatable medical-device centered infections. The difficulty in treating such infections results in great danger to the patient, and usually retrieval of the device with considerable pain and suffering. Clearly, development of processes that make biomedical devices resistant to bacterial adherence and colonization would have widespread application in the field of biomedical technology. A photochemical surface modification process is being investigated as a generic means of applying antimicrobial coatings to biomedical devices. The photochemical process results in covalent immobilization of coatings to all classes of medical device polymers. A discussion of the photochemical surface modification process and preliminary results demonstrating the success of photochemical coatings in formulating microbial-resistant surfaces are presented in this paper.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bacterial Infections/prevention & control , Equipment Contamination/prevention & control , Prostheses and Implants/adverse effects , Bacterial Adhesion , Delayed-Action Preparations , Photochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...