Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 12(12)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38132334

ABSTRACT

Germ line development and the origin of the primordial germ cells (PGCs) are very variable and may occur across a range of developmental stages and in several developmental contexts. In establishing and maintaining germ line, a conserved set of genes is involved. On the other hand, these genes are expressed in multipotent/pluripotent cells that may give rise to both somatic and germline cells. To begin elucidating mechanisms by which the germ line is specified in Enchytraeus coronatus embryos, we identified twenty germline/multipotency genes, homologs of Vasa, PL10, Piwi, Nanos, Myc, Pumilio, Tudor, Boule, and Bruno, using transcriptome analysis and gene cloning, and characterized their expression by whole-mount in situ hybridization. To answer the question of the possible origin of PGCs in this annelid, we carried out an additional description of the early embryogenesis. Our results suggest that PGCs derive from small cells originating at the first two divisions of the mesoteloblasts. PGCs form two cell clusters, undergo limited proliferation, and migrate to the developing gonadal segments. In embryos and juvenile E. coronatus, homologs of the germline/multipotency genes are differentially expressed in both germline and somatic tissue including the presumptive germ cell precursors, posterior growth zone, developing foregut, and nervous system.

2.
Genes (Basel) ; 14(7)2023 07 22.
Article in English | MEDLINE | ID: mdl-37510405

ABSTRACT

ParaHox genes are key developmental regulators involved in the patterning of the digestive tract along the anteroposterior axis and the development of the nervous system. Most studies have focused on the function of these genes in embryogenesis, while their expression patterns in postembryonic development often remain unknown. In this study, we identified for the first time all ParaHox orthologs in two naidid oligochaetes, N. communis and P. longiseta, and described their expression patterns during normal growth and fission in these animals. We showed that Gsx and Cdx are presented by two paralogs, while Xlox is a single copy gene in both species. Using whole-mount in situ hybridization, we also found that orthologs, except for the Xlox gene, have similar activity patterns with minor differences in details, while the expression patterns of paralogs can differ significantly. However, all these genes are involved in axial patterning and/or in tissue remodeling during growth and asexual reproduction in naidids. Moreover, during paratomic fission, these genes are expressed with spatial colinearity but temporal colinearity is broken. The results of this study may be evidence of the functional diversification of duplicated genes and suggest involvement of the ParaHox genes in whole-body patterning during growth and asexual reproduction in annelids.


Subject(s)
Annelida , Homeodomain Proteins , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Genes, Homeobox , Annelida/genetics , Gastrointestinal Tract/metabolism , Genes, Duplicate
SELECTION OF CITATIONS
SEARCH DETAIL
...