Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(4): e25923, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38390146

ABSTRACT

In this technology era, sustainable construction practices have become quite imperative. The exploration of alternative materials to reduce the environmental footprint is of paramount importance. This research paper delves into an exhaustive investigation concerning the utilization of recycled coarse aggregates (RCA) and rubber particles (RP) in concrete. It contributes to the growing body of knowledge aimed at fostering sustainable development in the construction industry by reducing waste, promoting recycling, and mitigating the environmental footprint of building materials. The objective of the study is to evaluate the potential benefits and limitations associated with incorporating these materials, thereby providing a sustainable alternative to conventional concrete. In this research, construction and demolition waste were recycled and used as RCA as a fractional switch of natural coarse aggregate (NCA) from 0% to 100%, with an increment of 20% replacement of NCA in concrete. The RP received from discarded tires generated as automobile industry waste were used as a volumetric fractional substitution of sand in concrete from 0% to 20%, with a 5% increment. No pre-treatment for RCA and RP was carried out before their utilization in concrete. A total of 26 mixes, including control concrete without NCA and RP, with a design strength of 40 MPa, were prepared and tested. Concrete mixes were examined for workability, density, mechanical, and durability properties. It was found that the concrete with 60% RCA and 10% RP showed satisfactory results in evaluation with the strength parameters of control concrete, as the compressive strength obtained for this concrete mix is 40.18 MPa, similar to the control mix. The optimization for RCA and RP was conducted using Response Surface Methodology (RSM). The major concern observed was a rise in water absorption with an increase in the percentage replacement of NCA and natural sand by RCA and RP. Findings from the investigation illustrate a promising prospect for the use of RCA and RP in concrete applications, displaying competent mechanical properties and enhanced durability under certain conditions, offering a viable option for environmentally friendly construction practices. However, the research also sheds light on some constraints and challenges, such as the variability in the quality of RCA and the necessity for meticulous quality control to ensure the reliability and consistency of the end product. It is discerned that further refinement in processing techniques and quality assurance measures is pivotal for mainstream adoption of RCA and RP in concrete construction.

2.
Heliyon ; 9(6): e17107, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484238

ABSTRACT

Plastic waste poses a significant hazard to the environment as a result of its high production rates, which endanger both the environment and its inhabitants. Similarly, another concern is the production of cement, which accounts for roughly 8% of global CO2 emissions. Thus, recycling plastic waste as a replacement for cementitious materials may be a more effective strategy for waste minimisation and cement elimination. Therefore, in this study, plastic waste (low-density polyethylene) is utilised in the production of plastic sand paver blocks without the use of cement. In addition to this, basalt fibers which is a green industrial material is also added in the production of eco-friendly plastic sand paver blocks to satisfy the standard of ASTM C902-15 of 20 N/mm2 for the light traffic. In order to make the paver blocks, the LDPE waste plastic was melted outside in the open air and then combined with sand. Variations were made to the ratio of LDPE to sand, the proportion of basalt fibers, and sand particle size. Paver blocks were evaluated for their compressive strength, water absorption, and at different temperatures. Including 0.5% percent basalt fiber of length 4 mm gives us the best result by enhancing compressive strength by 20.5% and decreasing water absorption by 50.5%. The best results were obtained with a ratio of 30:70 LDPE to sand, while the finest sand provides the greatest compressive strength. Moreover, the temperature effect was also studied from 0 to 60 °C, and the basalt fibers incorporated in plastic paver blocks showed only a 20% decrease in compressive strength at 60 °C. This research has produced eco-friendly paver blocks by removing cement and replacing it with plastic waste, which will benefit the environment, save money, reduce carbon dioxide emissions, and be suitable for low-traffic areas, all of which contribute to sustainable development.

3.
Materials (Basel) ; 15(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36233948

ABSTRACT

Increasing the percentage of recycling of various industrial waste is an important step towards caring for the environment. Coal ash is one of the most large-tonnage wastes, which is formed as a result of the operation of thermal power plants. The aim of this work is to develop a technology for the complex processing of coal ash. The tasks to achieve this aim are to develop a technology for the complex enrichment and separation of coal ash into components, with the possibility of their use in various applications, in particular: processing the aluminosilicate part as a pozzolanic additive to cement; carbon underburning for fuel briquettes; the iron-containing part for metallurgy and fertilizers. Complex enrichment and separation into components of coal ash were carried out according to the author's technology, which includes six stages: disintegration, flotation, two-stage magnetic separation, grinding, and drying. The aluminosilicate component has a fairly constant granulometric composition with a mode of 13.56 µm, a specific surface area of 1597.2 m2/kg, and a bulk density of 900 kg/m3. The compressive strength for seven and twenty-eight daily samples when Portland cement is replaced by 15% with an aluminosilicate additive, increases to 30-35%. According to the developed technology, high-calorie fuel briquettes are obtained from underburnt with a density of 1000-1200 kg/m3, a calorific value of 19.5-20 MJ/kg, and an ash content of 0.5-1.5%. The iron-containing component, recovered by two-stage magnetic separation, has the potential to be used in metallurgy as a coking additive, in particular for the production of iron and steel. In addition, an effective micro-fertilizer was obtained from the iron-containing component, which: is an excellent source of minerals; improves the quality of acidic soil; helps soil microorganisms decompose organic matter faster, turning it into elements available to plants; promotes rooting of seedlings; helps to more effectively deal with many pests and diseases. As a result, the complete utilization of coal ash in various applications has been achieved.

4.
Materials (Basel) ; 15(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36234321

ABSTRACT

During mining, only 4-8% is converted to final products, and the rest is accumulated in landfills. There is a lack of research on the study of various patterns and mechanisms of the formation of cement clinker minerals during the simultaneous distillation of zinc. This paper presents studies of thermodynamic stimulation of environmental and population protection by utilization of technogenic enrichment waste as secondary raw materials for clinker production and zinc extraction. In particular, a comparison of the Gibbs energy (ΔG) of clinker formation under standard chemical equations and under non-standard chemical equations is given. According to the results of the study, using thermodynamic simulation, the temperature intervals of mineral formation, the dependence of the Gibbs energy on temperature (ΔGT°), and the approximation equations were found; it was established that the presence of zinc ferrite contributes to the intensification of the formation of clinker minerals and the extraction of Zn to gas.

5.
Polymers (Basel) ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36080536

ABSTRACT

The modern energy-saving vector of development in building materials science is being implemented in a complex way through the development of new heat-insulating materials with the simultaneous exclusion of low-ecological cement from them. This article presents the results of the development of resource-saving technology for a heat-insulating composite material. The research is devoted to the development of scientific ideas about the technology and properties of effective cementless lightweight concretes. The aim of the work is to create a heat-insulating composite material based on porous granules and a matrix from mixtures of liquid glass and thermal energy waste. The novelty of the work lies in establishing the patterns of formation of a stable structure of a porous material during thermal curing of liquid glass with technogenic fillers. Studies of liquid glass mixtures with different contents of fly ash and aluminosilicate microspheres revealed the possibility of controlling the properties of molding masses in a wide range. To obtain a granular material, liquid glass mixtures of plastic consistency with a predominance of aluminosilicate microspheres are proposed. The matrix of composite materials is formed by a mobile mixture of liquid glass and a combined filler, in which fly ash predominates. The parameters of heat treatment of granular and composite materials are established to ensure the formation of a strong porous waterproof structure. The possibility of regulating the structure of composite materials due to different degrees of filling the liquid glass matrix with porous granules is shown. A heat-insulating concrete based on porous aggregate has been developed, characterized by the genetic commonality of the matrix and the granular component, density of 380-650 kg/m3, thermal conductivity of 0.095-0.100 W/(m °C) and strength of 3.5-9.0 MPa, resistance under conditions of variable values of humidity and temperature. A basic technological scheme for the joint production of granular and composite materials from liquid glass mixtures is proposed.

6.
Materials (Basel) ; 15(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36079400

ABSTRACT

Due to renovation and fighting in the world, a huge accumulation of construction and demolition waste is formed. These materials are effectively used as aggregates, but there is very little information about the use of scrap concrete to create cementless binders. The purpose of the work is to be a comprehensive study of the composition and properties of concrete wastes of various fractions with the aim of their rational use as cementless binders. The scientific novelty lies in the fact that the nature of the processes of structure formation of a cementless binder based on sandy fractions of the screening of fragments of destroyed buildings and structures, as a complex polyfunctional system, has been theoretically substantiated and experimentally confirmed. Different percentages of non-hydrated clinker minerals in concrete scrap were determined. In the smallest fraction (less than 0.16 mm), more than 20% of alite and belite are present. Waste of the old cement paste is more susceptible to crushing compared to the large aggregate embedded in it, therefore, particles of the old cement paste and fine aggregate predominate in the finer fractions of the waste. Comprehensive microstructural studies have been carried out on the possibility of using concrete scrap as a completely cementless binder using scanning electron microscopy, X-ray diffraction analysis, and differential thermal analysis. It has been established that for cementless samples prepared from the smallest fractions (less than 0.315 mm), the compressive strength is 1.5-2 times higher than for samples from larger fractions. This is due to the increased content of clinker minerals in their composition. The compressive strength of the cementless binder after 28 days (7.8 MPa), as well as the early compressive strength at the age of 1 day after steaming (5.9 MPa), make it possible to effectively use these materials for enclosing building structures.

7.
Materials (Basel) ; 15(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36013864

ABSTRACT

In the study, experimental and theoretical studies were carried out to assess the influence of the shapes of dents in the tank wall on the stress-strain state of the defect zone. By testing fragments of a cylindrical tank, it was found that the most appropriate expression is (5), which could take into account the leaching of the tank wall, resulting in a decrease in the stress concentration index. At the same time, during theoretical studies in this paper, it was found that polynomials determined the stress concentration coefficient, where the obtained analytical expression data were compared with the data determined numerically in the ANSYS program, and it was found that the spread was from 2% to 10%. According to the results of a numerical study of the stress-strain state of the dent zone in the tank wall, graphical dependences of the stress concentration coefficient on the dimensionless depth of the dent for various values of the dimensionless radius of the dents and do not exceed 2% of the indicators that are obtained. At the conclusion of the experimental and numerical studies, a conclusion was made about the degree of influence of the geometric dimensions of the dents on the stress concentration index.

8.
Materials (Basel) ; 15(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35888360

ABSTRACT

Finding new ways of recycling production waste to improve the characteristics of various building materials is an urgent scientific task. This article substantiates the possibility of the disposal of fly ash in the composition of soil concrete, which is used in the construction of the structural layers of road pavements, foundations of buildings and structures, as well as sites for various purposes. The scientific novelty lies in the fact that the structure formation of soil concretes based on loam and fly ash and modified with a stabilizing additive is being studied for the first time. It was found that the investigated fly ash, according to its hydraulic properties, is classified as latent active and can be introduced into the compositions of road soil concrete modified with additives of various resources. The effectiveness of the complex method of stabilization, due to changes in soil properties as a result of the use of the binding and stabilizing additives of polymer nature "Kriogelit", is shown. It was found that the optimal content of binder and fly ash in the samples was 8 and 10 wt.%, respectively. It was established that the use of the stabilizing additive "Kriogelit" makes it possible to obtain soil concrete with the highest strength (compressive strength 2.5 MPa, flexural strength 0.5 MPa) and frost resistance of at least F15. The microstructure, the degree of dehydration and carbonization, and the phase composition of the initial raw mixtures and soil concretes stabilized with the addition of "Kriogelit" were studied by methods of scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, thermogravimetry, and infrared spectroscopy. It was shown that organo-mineral complexes, with the participation of polymer and montmorillonite, are formed in stabilized soil concrete. It was revealed that structure formation is accompanied by the physical adsorption of the polymer on active centers of silicate minerals, carbonization, and hydration-dehydration processes. It was found that the reason for the increase in the strength of stabilized soil concretes is the hydrophobization of the porous structure of minerals, as well as the formation of calcium oxide silicate and dicalcium hydrated silicate. By the method of performing biotests with the test objects Daphnia magna Straus and Chlorella vulgaris Beijer, it was proven that the developed road concretes modified with the stabilizing additive "Kriogelit" do not have an acute toxic effect on the test objects and are safe for the environment and human health.

9.
Materials (Basel) ; 15(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35888529

ABSTRACT

A promising method of obtaining mineral fiber fillers for dry building mixtures is the processing of waste that comes from the production of technogenic fibrous materials (TFM). The novelty of the work lies in the fact that, for the first time, basalt production wastes were studied not only as reinforcing components, but also as binder ones involved in concrete structure formation. The purpose of the article is to study the physical and mechanical properties of waste technogenic fibrous materials as additives for optimizing the composition of raw concrete mixes. To assess the possibility of using wastes from the complex processing of TFM that were ground for 5 and 10 min as an active mineral additive to concrete, their chemical, mineralogical, and granulometric compositions, as well as the microstructure and physical and mechanical characteristics of the created concretes, were studied. It is established that the grinding of TFM for 10 min leads to the grinding of not only fibers, but also pellets, the fragments of which are noticeable in the total mass of the substance. The presence of quartz in the amorphous phase of TFM makes it possible to synthesize low-basic calcium silicate hydrates in a targeted manner. At 90 days age, at 10-20% of the content of TFM, the strength indicators increase (above 40 MPa), and at 30% of the additive content, they approach the values of the control composition without additives (above 35 MPa). For all ages, the ratio of flexural and compressive strengths is at the level of 0.2, which characterizes a high reinforcing effect. Analysis of the results suggests the possibility of using waste milled for 10 min as an active mineral additive, as well as to give better formability to the mixture and its micro-reinforcement to obtain fiber-reinforced concrete.

10.
Polymers (Basel) ; 14(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35890605

ABSTRACT

Nuclear energy offers a wide range of applications, which include power generation, X-ray imaging, and non-destructive tests, in many economic sectors. However, such applications come with the risk of harmful radiation, thereby requiring shielding to prevent harmful effects on the surrounding environment and users. Concrete has long been used as part of structures in nuclear power plants, X-ray imaging rooms, and radioactive storage. The direction of recent research is headed toward concrete's ability in attenuating harmful energy radiated from nuclear sources through various alterations to its composition. Radiation shielding concrete (RSC) is a composite-based concrete that was developed in the last few years with heavy natural aggregates such as magnetite or barites. RSC is deemed a superior alternative to many types of traditional normal concrete in terms of shielding against the harmful radiation, and being economical and moldable. Given the merits of RSCs, this article presents a comprehensive review on the subject, considering the classifications, alternative materials, design additives, and type of heavy aggregates used. This literature review also provides critical reviews on RSC performance in terms of radiation shielding characteristics, mechanical strength, and durability. In addition, this work extensively reviews the trends of development research toward a broad understanding of the application possibilities of RSC as an advanced concrete product for producing a robust and green concrete composite for the construction of radiation shielding facilities as a better solution for protection from sources of radiation. Furthermore, this critical review provides a view of the progress made on RSCs and proposes avenues for future research on this hotspot research topic.

11.
Materials (Basel) ; 15(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35806661

ABSTRACT

Concrete technology is adopted worldwide in construction due to its effectiveness, performance, and price benefits. Subsequently, it needs to be an eco-friendly, sustainable, and energy-efficient material. This is achieved by replacing or adding energy-efficient concrete materials from industries, such as ground granulated blast furnace slag, steel slag, fly ash, bottom ash, rice husk ash, etc. Likewise, copper slag is a waste material produced as molten slag from the copper industry, which can be used in concrete production. Copper slag can perform roles similar to pozzolans in the hydration process. This paper extends the comparative study of copper slag concrete with polypropylene fiber (PPF) subjected to destructive and non-destructive testing. Under destructive testing, compressive strength of concrete cubes, compressive strength of mortar cubes, splitting tensile tests on cylindrical specimens, and flexural tests on plain cement concrete were conducted and analysed. Ultrasonic pulse velocity and rebound hammer tests were performed on the samples as per IS13311-Part 1-1992 for non-destructive testing. The 100% replacement of copper slag exhibited a very high workability of 105 mm, while the addition of 0.8% PPF decreased the flowability of the concrete. Hence, the workability of concrete decreases as the fiber content increases. The density of the concrete was found to be increased in the range of 5% to 10%. Furthermore, it was found that, for all volume fractions of fiber, there was no reduction in compressive strength of up to 80% of copper slag concrete compared to control concrete. The 40% copper slag concrete was the best mix proportion for increasing compressive strength. However, for cement mortar applications, 80% copper slag is recommended. The findings of non-destructive testing show that, except for 100% copper slag, all mixes were of good quality compared to other mixes. Linear relationships were developed to predict compressive strength from UPV and rebound hammer test values. This relationship shows better prediction among dependent and independent values. It is concluded that copper slag has a pozzolanic composition, and is compatible with PPF, resulting in good mechanical characteristics.

12.
Materials (Basel) ; 15(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35744203

ABSTRACT

The production and utilization of concrete and concrete-based products have drastically increased with the surge of construction activities over the last decade, especially in countries such as China and India. Consequently, this has resulted in a corresponding increase in the energy used for the production of ready-mixed concrete. One approach to reduce the cost of concrete manufacturing is to reduce the energy required for the manufacturing process. The main hypothesis of this study is that the power required for mixing the concrete can be reduced through the use of mineral admixtures in the mix design. Optimization of energy consumption during mixing using admixtures in concrete manufacturing is the predominant focus of this article. To achieve this objective, power consumption data were measured and analyzed throughout the concrete mixing process. The power consumption curve is the only source to distinguish the behavior of the different materials used in the concrete in a closed chamber. In the current research, fly ash and ground granulated blast-furnace slag (GGBS) were used as mineral admixtures to produce ready-mixed concrete. The experimental study focused on the influence of GGBS and fly ash on power consumption during concrete mixing. The results indicated that the use of a higher content of GGBS is more beneficial in comparison to the use of fly ash in the mix due to the lower mixing time required to achieve homogeneity in the mixing process. It was found that the amount of energy required for mixing is directly related to the mixing time for the mix to achieve homogeneity.

13.
Materials (Basel) ; 15(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35744338

ABSTRACT

The construction industry relies heavily on concrete as a building material. The coarse aggregate makes up a substantial portion of the volume of concrete. However, the continued exploitation of granite rock for coarse aggregate results in an increase in the future generations' demand for natural resources. In this investigation, coconut shell was used in the place of conventional aggregate to produce coconut shell lightweight concrete. Class F fly ash was used as a partial substitute for cement to reduce the high cement content of lightweight concrete. The impact of steel fiber addition on the compressive strength and flexural features of sustainable concrete was investigated. A 10% weight replacement of class F fly ash was used in the place of cement. Steel fiber was added at 0.25, 0.5, 0.75, and 1.0% of the concrete volume. The results revealed that the addition of steel fibers enhanced the compressive strength by up to 39%. The addition of steel fiber to reinforced coconut shell concrete beams increased the ultimate moment capacity by 5-14%. Flexural toughness was increased by up to 45%. The span/deflection ratio of all fiber-reinforced coconut shell concrete beams met the IS456 and BS 8110 requirements. Branson's and the finite element models developed in this study agreed well with the experimental results. As a result, coconut shell concrete with steel fiber could be considered as a viable and environmentally-friendly construction material.

14.
Materials (Basel) ; 15(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35629454

ABSTRACT

For the first time, a comprehensive review of the literature data on the use of apricot (Prunus armeniaca) biomass components as a sorption material for the treatment of wastewater and environmental water from various pollutants is carried out in the present study. In addition to a comprehensive analysis of contemporary studies, the current work carried out its own microstructural and energy dispersive studies. It shows that apricot kernel shell is a promising raw material for obtaining sorption materials that can be used to extract various pollutants from aqueous media. The parameters of sorption interaction are presented, at which the highest rate of removal of pollutants was achieved. It is shown that the sorption capacity of apricot biomass components can be increased by modifying it with various chemical reagents, as well as other physical and physicochemical methods. We reveal that most publications consider the use of the latter as a raw material for the production of activated carbons. It is established that the surface area and total pore space of activated carbons from apricot kernel shells depend on the modes of carbonization and activation. It is shown that activated carbons are effective adsorbents for removing various pollutants (metal ions, dyes, oil and oil products) from aqueous media. It was found that the adsorption isotherms of pollutants in most cases are best described by the Langmuir and Freundlich models, and the process kinetics is most often described by the pseudo-second-order model. The possibility of improving the sorption characteristics of apricot biomass during chemical or physicochemical treatment is also shown.

15.
Materials (Basel) ; 15(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35591303

ABSTRACT

The practice of utilizing cold-drawn steel for structural and non-structural elements has expanded nowadays due to it being lighter in weight, economic section, desirable in fabrication, and its preferred post-buckling behavior over hot rolled sections. The cold-drawn steel section back to the back-lipped channel section has a wide application as a structural member. The fasteners are provided at regular intervals for the long-span structure to prevent individual failures. This study is concerned with the inadequacy of research addressing the behavior of built-up columns. The relevant built-up column section is chosen based on the AISI-S100:2007 specification. Thirty-six specimens were designed and tested by varying web, flange, lip dimensions, spacing between the chords, and battened width experimentally subjected to an axial compression. Comparing 36 experimentally buckled specimens with the model generated by Finite Element Method accompanied with ASI-recommended two direct strength methods (DSMs). The DSM comprises the step-by-step procedure incorporated with the elastic, critical, and global distortional interaction. Based on the performed reliability analysis, such as the experimental, analytical, and theoretical studies, the failure load, buckling mode, the economic section, and design rules were proposed. Four suitable sections were selected from the proposal, and the validation study was carried out. From the validation study, experimental values were found to be 1.072 times the FEM values, and DSM values were found to be 0.97 times the FEM values. Based on the significant findings of this study, the proposed design recommendation and the corrected value for DSM are suitable for designing back-to-back stiffened columns.

16.
Materials (Basel) ; 15(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35591434

ABSTRACT

In recent years, prepacked aggregate fibrous concrete (PAFC) is a new composite that has earned immense popularity and attracted researchers globally. The preparation procedure consists of two steps: the coarse aggregate is initially piled into a mold to create a natural skeleton and then filled with flowable grout. In this instance, the skeleton was completely filled with grout and bonded into an integrated body due to cement hydration, yielding a solid concrete material. In this research, experimental tests were performed to introduce five simple alterations to the ACI 544 drop weight impact test setup, intending to decrease result dispersion. The first alteration was replacing the steel ball with a steel bar to apply a line impact instead of a single point impact. The second and third introduced line and cross notched specimens at the specimen's top surface and the load applied through a steel plate of cross knife-like or line load types. These modifications distributed impact load over a broader area and decrease dispersion of results. The fourth and fifth were bedding with sand and coarse aggregate as an alternate to the solid base plate. One-hundred-and-eight cylindrical specimens were prepared and tested in 12 groups to evaluate the suggested alteration methods. Steel and polypropylene fibers were utilized with a dosage of 2.4% to produce PAFC. The findings indicated that the line notched specimens and sand bedding significantly decreased the coefficient of variation (COV) of the test results suggesting some alterations. Using a cross-line notched specimen and line of impact with coarse bedding also effectively reduced COV for all mixtures.

17.
Materials (Basel) ; 15(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35591435

ABSTRACT

Generally, the concrete with higher strength appears to produce brittle failure more easily. However, the use of mineral admixture can help in enhancing the ductility, energy dissipation, and seismic energy in the designed concrete. This paper presents energy absorption capacity, stiffness degradation, and ductility of the copper slag (CS) admixed reinforced concrete with fly ash (FA) beams subjected to forward cyclic load. The forward cyclic load was applied with the help of servo-hydraulic universal testing machines with 250 kN capacity. Twenty-four beams with a size of 100 mm × 150 mm × 1700 mm made with CS replaced for natural sand from 0% to 100% at an increment of 20%, and FA was replaced for cement from 0% to 30% with an increment of 10% were cast. Beams are designed for the grade of M30 concrete. Based on the preliminary investigation results, compressive strength of the concrete greatly increased when adding these two materials in the concrete. Normally, Grade of concrete can change the behaviour of the beam from a brittle manner to be more ductile manner. So, in this work, flexural behaviour of RC beams are studied with varying compressive strength of concrete. Experimental results showed that the RC beam made with 20% FA and 80% CS (FA20CS80) possesses higher ultimate load-carrying capacity than the control concrete beam. It withstands up to 18 cycles of loading with an ultimate deflection of 60 mm. The CS and FA admixed reinforced concrete composite beams have excellent ultimate load carrying capacity, stiffness, energy absorption capacity, and ductility indices compared to the control concrete beam.

18.
Materials (Basel) ; 15(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35591554

ABSTRACT

Concrete is a material that is widely used in the construction market due to its availability and cost, although it is prone to fracture formation. Therefore, there has been a surge in interest in self-healing materials, particularly self-healing capabilities in green and sustainable concrete materials, with a focus on different techniques offered by dozens of researchers worldwide in the last two decades. However, it is difficult to choose the most effective approach because each research institute employs its own test techniques to assess healing efficiency. Self-healing concrete (SHC) has the capacity to heal and lowers the requirement to locate and repair internal damage (e.g., cracks) without the need for external intervention. This limits reinforcement corrosion and concrete deterioration, as well as lowering costs and increasing durability. Given the merits of SHCs, this article presents a thorough review on the subject, considering the strategies, influential factors, mechanisms, and efficiency of self-healing. This literature review also provides critical synopses on the properties, performance, and evaluation of the self-healing efficiency of SHC composites. In addition, we review trends of development in research toward a broad understanding of the potential application of SHC as a superior concrete candidate and a turning point for developing sustainable and durable concrete composites for modern construction today. Further, it can be imagined that SHC will enable builders to construct buildings without fear of damage or extensive maintenance. Based on this comprehensive review, it is evident that SHC is a truly interdisciplinary hotspot research topic integrating chemistry, microbiology, civil engineering, material science, etc. Furthermore, limitations and future prospects of SHC, as well as the hotspot research topics for future investigations, are also successfully highlighted.

19.
Materials (Basel) ; 15(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35454557

ABSTRACT

The article presents the mixed finite element formulation for examining the biomagnetic fluid dynamics as governed by the Navier-Stokes equation, coupled with energy and magnetic expressions. Both ferrohydrodynamics and magnetohydrodynamics describe the additional magnetic effects. For model discretization, the Galerkin weighted residual method was performed. Departing from a good agreement with existing findings, a biomagnetic flow (blood) in a straight rectangular conduit was then simulated in the presence of a spatially changing magnetic distribution. By virtue of negligible spatial variation influence from the magnetic field, the effects of Lorentz force were not presently considered. It was further found that the model accurately exhibits the formation and distribution of vortices, temperature, and skin friction located adjacent to and remotely from the source of magnetic load following a rise in the magnetic intensity.

20.
Materials (Basel) ; 15(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35407694

ABSTRACT

Lime materials are in great demand for the restoration of the walls of historical buildings. However, lime coatings have insufficient resistance during operation. The purpose of this work was the modification of lime mortars with silicic acid sol in order to obtain more durable crystalline materials for construction purposes. A technology has been developed for obtaining a silica-containing additive, which consists in passing a liquid glass solution with a density of 1.053 kg/m3 through a cationic column and obtaining a silicic acid sol with a pH of 3-4 and a charge of (-) 0.053 V. The regeneration time and the amount of sol have been determined. Regularities of change in the radius of particles of silicic acid sol depending on age are determined. It is established that at an early age (up to 5 days), the radius of sol particles can be determined in accordance with the Rayleigh equation, and at a later age, in accordance with the Heller equation. The results of the calculation show that at the age of 1-5 days, the radius of the sol particles is 17.1-17.9 nm, and then the particles become coarser and the particle radius is 131.2-143 nm at the age of 19 days. The work of adhesion of silicic acid sol to lime and the heat of wetting are estimated. It is shown that the work of adhesion of water to lime is 28.9 erg/cm2, and that of the sol is 32.8 erg/cm2. The amount of heat Q released when lime is wetted with SiO2 sol is 15.0 kJ/kg, and when lime is wetted with water, it is 10.6 kJ/kg.

SELECTION OF CITATIONS
SEARCH DETAIL
...