Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cartilage ; 9(4): 410-416, 2018 10.
Article in English | MEDLINE | ID: mdl-28608754

ABSTRACT

Objective This study aimed to compare microfracture and application of adipose-derived stem cells (ADSCs) by local adherent technique enhanced by platelet-rich plasma (PRP) to provide a new approach for the repair of cartilage defect. Design Full-thickness cylindrical defects were created in the medial femoral condyle in 9 New Zealand White rabbits (5 months old, 4.65 ± 0.20 kg). Two groups of rabbits ( n = 3) were either treated with ADSCs (Group 1) or the microfracture technique (Group 2) following intraarticular injection of PRP 3 times in weekly intervals. Rabbits in control group ( n = 3) remained untreated. The outcome was assessed macroscopically, histologically, and immunohistochemically. Results At the end of week 12, Group 1 showed better defect filling compared with Group 2. Specimens treated with the combination of ADSCs and PRP exhibited significant differences from the other groups in all criteria of International Cartilage Repair Society macroscopic scoring system. Conclusions Intraarticular injection of autologous PRP in combination with transplantation of autologous ADSCs by local adherent technique enhances the quality of cartilage defect repair with better results in comparison with microfracture surgery in a rabbit model.


Subject(s)
Cartilage Diseases/therapy , Fractures, Stress , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells , Orthopedic Procedures/methods , Animals , Cartilage Diseases/pathology , Combined Modality Therapy , Disease Models, Animal , Injections, Intra-Articular , Knee Joint/pathology , Platelet-Rich Plasma , Rabbits
2.
Vet Res Commun ; 38(3): 221-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24915787

ABSTRACT

Avian osteoblasts have been isolated particularly from chicken embryo, but data about other functional tissue sources of adult avian osteoblast precursors are missing. The method of preparation of pigeon osteoblasts is described in this study. We demonstrate that pigeon cancellous bone derived osteoblasts have particular proliferative capacity in vitro in comparison to mammalian species and developed endogenous ALP. Calcium deposits formation in vitro was confirmed by alizarin red staining. Only a few studies have attempted to investigate bone grafting and treatment of bone loss in birds. Lack of autologous bone grafts in birds has prompted investigation into the use of avian xenografts for bone augmentation. Here we present a method of xenografting of ostrich demineralised cancellous bone scaffold seeded with allogeneic adult pigeon osteoblasts. Ostrich demineralised cancellous bone scaffold supported proliferation of pigeon osteoblasts during two weeks of co - cultivation in vitro. Scanning electron microscopy demonstrated homogeneous adult pigeon osteoblasts attachment and distribution on the surface of xenogeneic ostrich demineralised cancellous bone. Our preliminary in vitro results indicate that demineralised cancellous bone from ostrich tibia could provide an effective biological support for growth and proliferation of allogeneic osteoblasts derived from cancellous bone of pigeons.


Subject(s)
Bone Transplantation/veterinary , Cell Culture Techniques/veterinary , Osteoblasts/cytology , Animals , Cells, Cultured , Columbidae , Microscopy, Electron, Scanning , Osteoblasts/ultrastructure , Struthioniformes , Tissue Scaffolds/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...