Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 409(6820): 610-4, 2001 Feb 01.
Article in English | MEDLINE | ID: mdl-11214318

ABSTRACT

Higher level relationships among placental mammals, as well as the historical biogeography and morphological diversification of this group, remain unclear. Here we analyse independent molecular data sets, having aligned lengths of DNA of 5,708 and 2,947 base pairs, respectively, for all orders of placental mammals. Phylogenetic analyses resolve placental orders into four groups: Xenarthra, Afrotheria, Laurasiatheria, and Euarchonta plus Glires. The first three groups are consistently monophyletic with different methods of analysis. Euarchonta plus Glires is monophyletic or paraphyletic depending on the phylogenetic method. A unique nine-base-pair deletion in exon 11 of the BRCA1 gene provides additional support for the monophyly of Afrotheria, which includes proboscideans, sirenians, hyracoids, tubulidentates, macroscelideans, chrysochlorids and tenrecids. Laurasiatheria contains cetartiodactyls, perissodactyls, carnivores, pangolins, bats and eulipotyphlan insectivores. Parallel adaptive radiations have occurred within Laurasiatheria and Afrotheria. In each group, there are aquatic, ungulate and insectivore-like forms.


Subject(s)
Biological Evolution , Mammals/classification , Animals , DNA , Humans , Mammals/genetics , Phylogeny , Sequence Alignment
2.
Mol Biol Evol ; 18(2): 132-43, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11158372

ABSTRACT

Both mitochondrial and nuclear gene sequences have been employed in efforts to reconstruct deep-level phylogenetic relationships. A fundamental question in molecular systematics concerns the efficacy of different types of sequences in recovering clades at different taxonomic levels. We compared the performance of four mitochondrial data sets (cytochrome b, cytochrome oxidase II, NADH dehydrogenase subunit I, 12S rRNA-tRNA-16S rRNA) and eight nuclear data sets (exonic regions of alpha-2B adrenergic receptor, aquaporin, ss-casein, gamma-fibrinogen, interphotoreceptor retinoid binding protein, kappa-casein, protamine, von Willebrand Factor) in recovering deep-level mammalian clades. We employed parsimony and minimum-evolution with a variety of distance corrections for superimposed substitutions. In 32 different pairwise comparisons between these mitochondrial and nuclear data sets, we used the maximum set of overlapping taxa. In each case, the variable-length bootstrap was used to resample at the size of the smaller data set. The nuclear exons consistently performed better than mitochondrial protein and rRNA-tRNA coding genes on a per-residue basis in recovering benchmark clades. We also concatenated nuclear genes for overlapping taxa and made comparisons with concatenated mitochondrial protein-coding genes from complete mitochondrial genomes. The variable-length bootstrap was used to score the recovery of benchmark clades as a function of the number of resampled base pairs. In every case, the nuclear concatenations were more efficient than the mitochondrial concatenations in recovering benchmark clades. Among genes included in our study, the nuclear genes were much less affected by superimposed substitutions. Nuclear genes having appropriate rates of substitution should receive strong consideration in efforts to reconstruct deep-level phylogenetic relationships.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Genetic Heterogeneity , Phylogeny , RNA, Ribosomal/genetics , RNA, Transfer/genetics , RNA/genetics , Animals , Humans , Likelihood Functions , Linear Models , Sequence Homology, Nucleic Acid
3.
Syst Biol ; 48(1): 65-75, 1999 Mar.
Article in English | MEDLINE | ID: mdl-12078646

ABSTRACT

We concatenated sequences for four mitochondrial genes (12S rRNA, tRNA valine, 16S rRNA, cytochrome b) and four nuclear genes [aquaporin, alpha 2B adrenergic receptor (A2AB), interphotoreceptor retinoid-binding protein (IRBP), von Willebrand factor (vWF)] into a multigene data set representing 11 eutherian orders (Artiodactyla, Hyracoidea, Insectivora, Lagomorpha, Macroscelidea, Perissodactyla, Primates, Proboscidea, Rodentia, Sirenia, Tubulidentata). Within this data set, we recognized nine mitochondrial partitions (both stems and loops, for each of 12S rRNA, tRNA valine, and 16S rRNA; and first, second, and third codon positions of cytochrome b) and 12 nuclear partitions (first, second, and third codon positions, respectively, of each of the four nuclear genes). Four of the 21 partitions (third positions of cytochrome b, A2AB, IRBP, and vWF) showed significant heterogeneity in base composition across taxa. Phylogenetic analyses (parsimony, minimum evolution, maximum likelihood) based on sequences for all 21 partitions provide 99-100% bootstrap support for Afrotheria and Paenungulata. With the elimination of the four partitions exhibiting heterogeneity in base composition, there is also high bootstrap support (89-100%) for cow + horse. Statistical tests reject Altungulata, Anagalida, and Ungulata. Data set heterogeneity between mitochondrial and nuclear genes is most evident when all partitions are included in the phylogenetic analyses. Mitochondrial-gene trees associate cow with horse, whereas nuclear-gene trees associate cow with hedgehog and these two with horse. However, after eliminating third positions of A2AB, IRBP, and vWF, nuclear data agree with mitochondrial data in supporting cow + horse. Nuclear genes provide stronger support for both Afrotheria and Paenungulata. Removal of third positions of cytochrome b results in improved performance for the mitochondrial genes in recovering these clades.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genes , Mammals/classification , Mammals/genetics , Animals , Base Composition , Cytochrome b Group/genetics , Female , Phylogeny , Placenta , Pregnancy , RNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , RNA, Transfer, Val/genetics , Rabbits/classification
4.
Nature ; 388(6637): 61-4, 1997 Jul 03.
Article in English | MEDLINE | ID: mdl-9214502

ABSTRACT

The order Insectivora, including living taxa (lipotyphlans) and archaic fossil forms, is central to the question of higher-level relationships among placental mammals. Beginning with Huxley, it has been argued that insectivores retain many primitive features and are closer to the ancestral stock of mammals than are other living groups. Nevertheless, cladistic analysis suggests that living insectivores, at least, are united by derived anatomical features. Here we analyse DNA sequences from three mitochondrial genes and two nuclear genes to examine relationships of insectivores to other mammals. The representative insectivores are not monophyletic in any of our analyses. Rather, golden moles are included in a clade that contains hyraxes, manatees, elephants, elephant shrews and aardvarks. Members of this group are of presumed African origin. This implies that there was an extensive African radiation from a single common ancestor that gave rise to ecologically divergent adaptive types. 12S ribosomal RNA transversions suggest that the base of this radiation occurred during Africa's window of isolation in the Cretaceous period before land connections were developed with Europe in the early Cenozoic era.


Subject(s)
Eulipotyphla/classification , Mammals/classification , Phylogeny , Africa , Animals , Biological Evolution , Cell Nucleus/genetics , Humans , Mitochondria/genetics , Molecular Sequence Data , RNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...