Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Access ; 8: 177647-177666, 2020.
Article in English | MEDLINE | ID: mdl-34786292

ABSTRACT

Rapid spread of Coronavirus disease COVID-19 leads to severe pneumonia and it is estimated to create a high impact on the healthcare system. An urgent need for early diagnosis is required for precise treatment, which in turn reduces the pressure in the health care system. Some of the standard image diagnosis available is Computed Tomography (CT) scan and Chest X-Ray (CXR). Even though a CT scan is considered a gold standard in diagnosis, CXR is most widely used due to widespread, faster, and cheaper. This study aims to provide a solution for identifying pneumonia due to COVID-19 and healthy lungs (normal person) using CXR images. One of the remarkable methods used for extracting a high dimensional feature from medical images is the Deep learning method. In this research, the state-of-the-art techniques used is Genetic Deep Learning Convolutional Neural Network (GDCNN). It is trained from the scratch for extracting features for classifying them between COVID-19 and normal images. A dataset consisting of more than 5000 CXR image samples is used for classifying pneumonia, normal and other pneumonia diseases. Training a GDCNN from scratch proves that, the proposed method performs better compared to other transfer learning techniques. Classification accuracy of 98.84%, the precision of 93%, the sensitivity of 100%, and specificity of 97.0% in COVID-19 prediction is achieved. Top classification accuracy obtained in this research reveals the best nominal rate in the identification of COVID-19 disease prediction in an unbalanced environment. The novel model proposed for classification proves to be better than the existing models such as ReseNet18, ReseNet50, Squeezenet, DenseNet-121, and Visual Geometry Group (VGG16).

2.
Comput Intell Neurosci ; 2017: 6563498, 2017.
Article in English | MEDLINE | ID: mdl-28473849

ABSTRACT

The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria.


Subject(s)
Algorithms , Bees/physiology , Biomimetics , Efficiency, Organizational , Nurses/organization & administration , Personnel Staffing and Scheduling , Animals , Decision Making
SELECTION OF CITATIONS
SEARCH DETAIL
...