Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 49(1): 370-381, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34724228

ABSTRACT

PURPOSE: Observed gross tumor volume (GTV) shrinkage during radiotherapy (RT) raises the question of whether to adapt treatment to changes observed on the acquired images. In the literature, two modes of tumor regression have been described: elastic and non-elastic. These modes of tumor regression will affect the safety of treatment adaptation. This study applies a novel approach, using routine cone-beam computed tomography (CBCT) and deformable image registration to automatically distinguish between elastic and non-elastic tumor regression. METHODS: In this retrospective study, 150 locally advanced non-small cell lung cancer patients treated with 55 Gray of radiotherapy were included. First, the two modes of tumor regression were simulated. For each mode of tumor regression, one timepoint was simulated. Based on the results of simulated data, the approach used for analysis in real patients was developed. CBCTs were non-rigidly registered to the baseline CBCT using a cubic B-spline algorithm, NiftyReg. Next, the Jacobian determinants were computed from the deformation vector fields. To capture local volume changes, 10 Jacobian values were sampled perpendicular to the surface of the GTV, across the lung-tumor boundary. From the simulated data, we can distinguish elastic from non-elastic tumor regression by comparing the Jacobian values samples between 5 and 12.5 mm inside and 5 and 12.5 mm outside the planning GTV. Finally, morphometric results were compared between tumors of different histologies. RESULTS: Most patients (92.3%) in our cohort showed stable disease in the first week of treatment and non-elastic shrinkage in the later weeks of treatment. At week 2, 125 patients (88%) showed stable disease, three patients (2.1%) disease progression, and 11 patients (8%) regression. By treatment completion, 91 patients (64%) had stable disease, one patient (0.7%) progression and 46 patients (32%) regression. A slight difference in the mode of tumor change was observed between tumors of different histologies. CONCLUSION: Our novel approach shows that it may be possible to automatically quantify and identify global changes in lung cancer patients during RT, using routine CBCT images. Our results show that different regions of the tumor change in different ways. Therefore, careful consideration should be taken when adapting RT.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cone-Beam Computed Tomography , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Retrospective Studies , Tumor Burden
2.
Healthcare (Basel) ; 11(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36611519

ABSTRACT

The growing awareness of the influence of "what we eat" on lifestyle and health has led to an increase in the use of embedded food analysis and recognition systems. These solutions aim to effectively monitor daily food consumption, and therefore provide dietary recommendations to enable and support lifestyle changes. Mobile applications, due to their high accessibility, are ideal for real-life food recognition, volume estimation and calorific estimation. In this study, we conducted a systematic review based on articles that proposed mobile computer vision-based solutions for food recognition, volume estimation and calorific estimation. In addition, we assessed the extent to which these applications provide explanations to aid the users to understand the related classification and/or predictions. Our results show that 90.9% of applications do not distinguish between food and non-food. Similarly, only one study that proposed a mobile computer vision-based application for dietary intake attempted to provide explanations of features that contribute towards classification. Mobile computer vision-based applications are attracting a lot of interest in healthcare. They have the potential to assist in the management of chronic illnesses such as diabetes, ensuring that patients eat healthily and reducing complications associated with unhealthy food. However, to improve trust, mobile computer vision-based applications in healthcare should provide explanations of how they derive their classifications or volume and calorific estimations.

3.
Phys Med Biol ; 66(22)2021 11 05.
Article in English | MEDLINE | ID: mdl-34644691

ABSTRACT

Objective. In this study we developed an automatic method to predict tumour volume and shape in weeks 3 and 4 of radiotherapy (RT), using cone-beam computed tomography (CBCT) scans acquired up to week 2, allowing identification of large tumour changes.Approach. 240 non-small cell lung cancer (NSCLC) patients, treated with 55 Gy in 20 fractions, were collected. CBCTs were rigidly registered to the planning CT. Intensity values were extracted in each voxel of the planning target volume across all CBCT images from days 1, 2, 3, 7 and 14. For each patient and in each voxel, four regression models were fitted to voxel intensity; applying linear, Gaussian, quadratic and cubic methods. These models predicted the intensity value for each voxel in weeks 3 and 4, and the tumour volume found by thresholding. Each model was evaluated by computing the root mean square error in pixel value and structural similarity index metric (SSIM) for all patients. Finally, the sensitivity and specificity to predict a 30% change in volume were calculated for each model.Main results. The linear, Gaussian, quadratic and cubic models achieved a comparable similarity score, the average SSIM for all patients was 0.94, 0.94, 0.90, 0.83 in week 3, respectively. At week 3, a sensitivity of 84%, 53%, 90% and 88%, and specificity of 99%, 100%, 91% and 42% were observed for the linear, Gaussian, quadratic and cubic models respectively. Overall, the linear model performed best at predicting those patients that will benefit from RT adaptation. The linear model identified 21% and 23% of patients in our cohort with more than 30% tumour volume reduction to benefit from treatment adaptation in weeks 3 and 4 respectively.Significance. We have shown that it is feasible to predict the shape and volume of NSCLC tumours from routine CBCTs and effectively identify patients who will respond to treatment early.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cone-Beam Computed Tomography/methods , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
4.
Phys Med Biol ; 65(21): 215001, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32693397

ABSTRACT

In this study, we propose a novel approach to investigate changes in the visible tumour and surrounding tissues with the aim of identifying patterns of tumour change during radiotherapy (RT) without segmentation on the follow-up images. On-treatment cone-beam computed tomography (CBCT) images of 240 non-small cell lung cancer (NSCLC) patients who received 55 Gy of RT were included. CBCTs were automatically aligned onto planning computed tomography (planning CT) scan using a two-step rigid registration process. To explore density changes across the lung-tumour boundary, eight shells confined to the shape of the gross tumour volume (GTV) were created. The shells extended 6 mm inside and outside of the GTV border, and each shell is 1.5 mm thick. After applying intensity correction on CBCTs, the mean intensity was extracted from each shell across all CBCTs. Thereafter, linear fits were created, indicating density change over time in each shell during treatment. The slopes of all eight shells were clustered to explore patterns in the slopes that show how tumours change. Seven clusters were obtained, 97% of the patients were clustered into three groups. After visual inspection, we found that these clusters represented patients with little or no density change, progression and regression. For the three groups, the survival curves were not significantly different between the groups, p-value = 0.51. However, the results show that definite patterns of tumour change exist, suggesting that it may be possible to identify patterns of tumour changes from on-treatment CBCT images.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cone-Beam Computed Tomography , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Adult , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Tumor Burden/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...