Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Chem ; 2023 11 08.
Article in English | MEDLINE | ID: mdl-37946342

ABSTRACT

Benzimidazole nucleus is a predominant heterocycle displaying a wide spectrum of pharmacological activities. The privileged nature of the benzimidazole scaffold has been revealed by its presence in most small molecule drugs and in its ability to bind multiple receptors with high affinity. A literature review of the scaffold reveals several instances where structural modifications of the benzimidazole core have resulted in high-affinity lead compounds against a variety of biological targets. Hence, this structural moiety offers opportunities to discover novel, better, safe and highly potent biological agents. The goal of the present review is to compile the medicinal properties of benzimidazole derivatives with a focus on SAR (Structure-Activity Relationships).

2.
Curr Comput Aided Drug Des ; 18(4): 271-292, 2022.
Article in English | MEDLINE | ID: mdl-35927818

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder. The multifactorial etiology of AD has led to the design of multitarget directed ligands (MTDL) for AD. Tacrine an acetylcholinesterase (AChE) inhibitor was the first FDA approved drug for AD but is discontinued due to hepatotoxicity. OBJECTIVE: Present research focused on incorporating a flavone to the tacrine nucleus to enhance the anti-Alzheimer's property of the tacrine with the synergistic effect of flavone which is a very good antioxidant. It is expected that the antioxidant property and hepatoprotective nature of flavones will reduce the hepatotoxic side effect of tacrine. METHODS: We designed and synthesized ten flavone substituted tacrine derivatives and evaluated for in vitro AChE and BuChE inhibitoy activity by modified Ellman's method using eeAChE and eqBuChE. In vitro antioxidant activity was studied by DPPH radical scavenging assay. Molecular modeling studies were conducted in Schrodinger and AutoDock Vina with TcAChE(PDB ID:1H23),hAChE(PDB ID:4EY7) and hBuChE(PDB ID:4TPK). RESULTS: All the compounds exhibited potent inhibitory effect on AChE and BuChE with IC50 values in µM concentration. The compounds exhibited very good antioxidant activity in DPPH radical scavenging assay. Among the compounds the compound AF1 showed highest activity with IC50 value of 0.93 µM for AChE and 1.48 µM for BuChE and also showed significant antioxidant activity (2.6 nM). A correlation graph was plotted for IC 50 values vs Dock score and the results are promising with r2 values of 0.62 and 0.73 for AChE and BuChE inhibition respectively which proved the reliability of docking approaches. CONCLUSION: The results highlighted the multifunctional nature of the novel Tacrine-Flavone hybrids and they may be promising MTDL for AD.


Subject(s)
Alzheimer Disease , Flavones , Humans , Tacrine/pharmacology , Tacrine/chemistry , Tacrine/therapeutic use , Cholinesterase Inhibitors/chemistry , Alzheimer Disease/drug therapy , Acetylcholinesterase/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Reproducibility of Results , Molecular Docking Simulation , Flavones/pharmacology , Ligands , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...