Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e28533, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38590844

ABSTRACT

Government monitoring commonly includes regulating POPs in animal feed and products of animal origin, with many countries setting Maximum Residue Levels (MRLs) to ensure safe tolerable concentrations. However, these MRLs do not address the presence of most POP families in soil, where concentrations can be much higher due to the contaminants' strong affinity and persistence in comparison to other environmental matrices. Extensive damage to food and production systems during a pollution incident causing soil contamination by POPs lead to severe economic and social consequences for the affected area. To mitigate these effects, it is crucial to implement necessary measures for consumer protection while also focusing on rehabilitating conditions for food production, tailored to both commercial farms and private holders. In this context, the present work aims to develop and test a methodology for assessing the tolerable concentration of the most cancerogenic legacy POPs in soil for various livestock animals in diverse rearing systems ensuring the safety of food of animal origin. Therefore, we summarize existing knowledge about the risk of POP transfer in different livestock breeding systems via soil exposure, and modeling via a backward calculation from the MRLs the corresponding tolerable quantity of POPs that may be ingested by animals in the considered rearing system. Results of these simulations showed that soil ingestion is a predominant contamination pathway, which is a central factor in the risk assessment of POP exposure on livestock farms, especially in free-range systems. In field conditions of POP exposure, low productive animals may be more susceptible to uptake through soil than high-yielding animals, even if the feed respected MRLs. Results show that PCDD/Fs revealed the lowest security ratio for low productive dairy cows (1.5) compared to high productive ones (52). Laying hens with a productivity of 45% show also as a high sensitivity to POPs exposure via soil ingestion. Indeed, their security ratio for PCDD/Fs, lindane and DDT were 3, 2 and 1, respectively. In perspective, proposed methodology can be adapted for assessing the risk of industrial POPs newly listed in the Stockholm Convention. In practice, it could be useful for food producers to apprehend their own risk of chemical contamination.

2.
J Xenobiot ; 14(1): 267-284, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38390996

ABSTRACT

Biochars (BCs) and activated carbons (ACs) are well-known carbon-rich materials that are being increasingly studied in environmental sciences for water treatment applications to remediate pollutant sequestration in soil. This study aimed to assess the impact of Sargasso BC particle size and amendment rate on the environmental availability of DDT and DDT metabolites in two distinct Kazakh soils. These two soils were collected in the vicinity of storehouse facilities in Kyzylkairat and Beskainar that store banned pesticides. They presented very distinct concentration levels of DDT and DDT metabolites. Three different types of carbonaceous matrices were tested: Sargasso BC and two commercial ACs (ORBOTM and DARCO©). For the granulometry effect, Sargasso BC was ground, and two particle sizes were tested (<150 µm, >150 µm) and compared to an unground material. Four distinct application rates were tested (0.25, 0.5, 1, and 2% (w/w)). After a three-month maturation period, environmental availability was assessed using an ISO/DIS 16751, part B-modified methodology. Interestingly, the best reductions in DDT environmental availability were obtained with the finest particle size (both ACs and Sargasso BC < 150 µm). More specifically, the effectiveness of the strategy seemed to depend on many factors. Firstly, a clear soil effect was demonstrated, suggesting that the more contaminated the soil, the more efficient this strategy may be. Secondly, the results showed that an increase in the amendment rate improves the immobilization of DDT and DDT metabolites. The sequestration material demonstrated different efficiency values (up to 58 ± 4% for Sargasso BC < 150 µm and 85 ± 4% for DARCO at a 2% application rate). Finally, a clear molecule effect was displayed, demonstrating the following immobilization order: p,p'-DDE > p,p'-DDD > p,p'-DDT > o,p'-DDT.

3.
Chemosphere ; 262: 128351, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33182113

ABSTRACT

The transfer of POPs in food of animal origin has been studied by a meta-analysis of 28 peer-reviewed articles using transfer rate (TR) for milk and eggs and bioconcentration factors (BCF) for eligible tissues after establishing an adapted methodology. TRs of the most toxic PCDD/Fs into milk were generally elevated and even higher into eggs. BCFs in excreting adult animals varied widely between studies complicating to hierarchize tissues or congeners, even if liver and fat seemed to bioconcentrate more than lean tissues. Short time studies have clearly shown low BCFs contrarily to field studies showing the highest BCFs. The BCFs of PCDD/Fs in growing animals were higher in liver than in fat or muscle. In contrast to easily bioconcentrating hexachlorinated congeners, octa- and heptachlorinated congeners barely bioconcentrate. PCB transfer into milk and eggs was systematically high for very lipophilic congeners. Highly ortho-chlorinated PCBs were transferred >50% into milk and eggs and even >70% for congeners 123 and 167 into eggs. BCFs of the most toxic PCBs 126 and 169 were significantly higher than for less toxic congeners. BCFs seem generally low in PBDEs except congeners 47, 153 and 154. DDT and its metabolites showed high bioconcentration. Differences between tissues appeared but were masked by a study effect. In addition to some methodologic recommendations, this analysis showed the high transfer of POPs into eggs, milk and liver when animals were exposed justifying a strong monitoring in areas with POP exposure.


Subject(s)
Environmental Pollutants/analysis , Food Contamination/analysis , Animals , Dibenzofurans/analysis , Dibenzofurans, Polychlorinated/analysis , Eggs/analysis , Environmental Monitoring , Food Chain , Halogenated Diphenyl Ethers/analysis , Livestock , Milk/chemistry , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analysis
4.
Environ Sci Pollut Res Int ; 27(33): 41023-41032, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31786765

ABSTRACT

Chlordecone (Kepone) (CLD) is a highly persistent pesticide formerly used in the French West Indies. High levels of this pesticide are still found in soils and represent a subsequent source of contamination for outdoor-reared animals which may ingest involuntary non negligible amounts of soil. In that context, sequestering matrices like activated carbons (ACs) may be used to efficiently decrease the bioavailability of such organic pollutants. The present study intends to assess the respective efficiency of two sequestering strategies where two different ACs were provided either via feed incorporation or via soil amendment. This study involved 20 piglets randomly distributed into 5 experimental groups (4 replicates). All groups were exposed to 10 µg of CLD per kg of BW per day during 10 days via a contaminated soil. In both "Soil-ACs" treatment groups, the contaminated soil was amended by 2% (mass basis) of one of the two ACs. The two "Feed-ACs" groups received the contaminated soil and one dough ball containing 0.5% (mass basis) of one of the ACs. The piglets were then euthanized before collection of pericaudal adipose tissue and the whole liver and CLD analysis. A significant decrease of CLD concentrations in liver and adipose tissue was observed only in the "Soil-ACs" groups in comparison with the control group (P < 0.001). This decrease was particularly important for the coconut shell activated carbon where relative bioavailability was found lower than 1.8% for both tissues.


Subject(s)
Chlordecone , Insecticides , Soil Pollutants , Animals , Biological Availability , Charcoal , Chlordecone/analysis , Insecticides/analysis , Soil , Soil Pollutants/analysis , West Indies
5.
Chemosphere ; 90(1): 112-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22955049

ABSTRACT

Knowledge of the environmental behavior of chemicals is a fundamental part of the risk assessment process. The present paper discusses various methods of ranking of a series of persistent organic pollutants (POPs) according to the persistence, bioaccumulation and toxicity (PBT) characteristics. Traditionally ranking has been done as an absolute (total) ranking applying various multicriteria data analysis methods like simple additive ranking (SAR) or various utility functions (UFs) based rankings. An attractive alternative to these ranking methodologies appears to be partial order ranking (POR). The present paper compares different ranking methods like SAR, UF and POR. Significant discrepancies between the rankings are noted and it is concluded that partial order ranking, as a method without any pre-assumptions concerning possible relation between the single parameters, appears as the most attractive ranking methodology. In addition to the initial ranking partial order methodology offers a wide variety of analytical tools to elucidate the interplay between the objects to be ranked and the ranking parameters. In the present study is included an analysis of the relative importance of the single P, B and T parameters.


Subject(s)
Classification/methods , Environmental Pollutants/classification , Environmental Pollution/statistics & numerical data , Organic Chemicals/classification , Environmental Pollutants/metabolism , Environmental Pollutants/toxicity , Organic Chemicals/metabolism , Organic Chemicals/toxicity , Risk Assessment/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...