Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 156: 106611, 2021 11.
Article in English | MEDLINE | ID: mdl-33975129

ABSTRACT

Perchlorate (ClO4-) is harmful to human health, and knowledge on the levels and sources of natural ClO4- in different environments remains rather limited. Here, we investigate ClO4- in aerosol samples collected along a cross-hemisphere ship cruise between China and Antarctica and on a traverse between coastal East Antarctica and the ice sheet summit (Dome Argus). Perchlorate concentrations range from a few to a few hundred pg m-3. A clear latitudinal trend is found, with elevated ClO4- concentrations near populated areas and in the southern mid-high latitudes. Spatial patterns of atmospheric ClO4- over oceans near the landmasses support that terrestrial ClO4- is not transported efficiently over long distances. In the southern mid-latitudes, higher ClO4- concentrations in March than in November-December may be caused by significant stratospheric inputs in March. Perchlorate concentrations appear to be higher in the warm half than in the cold half of the year in the southern high latitudes, suggesting seasonal difference in main atmospheric sources. ClO4- may be formed in the reactions between chlorine free radical (Cl·) and ozone (O3) in the stratosphere when Antarctic ozone hole occurs during September-October. And the stratosphere-produced ClO4- is moved to the boundary layer in several months and may be responsible for the high ClO4- concentrations in the warm half of the year. Perchlorate produced by photochemical reactions between O3 and Cl· in the Antarctic stratosphere is likely responsible for the higher ClO4- concentrations in Antarctica than in Arctic.


Subject(s)
Ozone , Perchlorates , Antarctic Regions , Atmosphere , Chlorine , Humans , Ozone/analysis
2.
Science ; 322(5903): 940-2, 2008 Nov 07.
Article in English | MEDLINE | ID: mdl-18988851

ABSTRACT

A record from Wanxiang Cave, China, characterizes Asian Monsoon (AM) history over the past 1810 years. The summer monsoon correlates with solar variability, Northern Hemisphere and Chinese temperature, Alpine glacial retreat, and Chinese cultural changes. It was generally strong during Europe's Medieval Warm Period and weak during Europe's Little Ice Age, as well as during the final decades of the Tang, Yuan, and Ming Dynasties, all times that were characterized by popular unrest. It was strong during the first several decades of the Northern Song Dynasty, a period of increased rice cultivation and dramatic population increase. The sign of the correlation between the AM and temperature switches around 1960, suggesting that anthropogenic forcing superseded natural forcing as the major driver of AM changes in the late 20th century.

SELECTION OF CITATIONS
SEARCH DETAIL
...