Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(20): 5968-5974, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38682941

ABSTRACT

Recently, topological responses of magnons have emerged as a central theme in magnetism and spintronics. However, resulting Hall responses are typically weak and infrequent, since, according to present understanding, they arise from effective spin-orbit couplings, which are weaker compared to the exchange energy. Here, by investigating transport properties of magnon orbital moments, we predict that the magnon orbital Nernst effect is an intrinsic characteristic of the honeycomb antiferromagnet and therefore, it manifests even in the absence of spin-orbit coupling. For the electric detection, we propose an experimental scheme based on the magnetoelectric effect. Our results break the conventional wisdom that the Hall transport of magnons requires spin-orbit coupling by predicting the magnon orbital Nernst effect in a system without it, which leads us to envision that our work initiates the intensive search for various magnon Hall effects in generic magnetic systems with no reliance on spin-orbit coupling.

2.
Angew Chem Int Ed Engl ; 61(26): e202204948, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35560974

ABSTRACT

Photocatalytic conversion of CO2 into transportable fuels such as formic acid (HCOOH) under sunlight is an attractive solution to the shortage of energy and carbon resources as well as to the increase in Earth's atmospheric CO2 concentration. The use of abundant elements as the components of a photocatalytic CO2 reduction system is important, and a solid catalyst that is active, recyclable, nontoxic, and inexpensive is strongly demanded. Here, we show that a widespread soil mineral, alpha-iron(III) oxyhydroxide (α-FeOOH; goethite), loaded onto an Al2 O3 support, functions as a recyclable catalyst for a photocatalytic CO2 reduction system under visible light (λ>400 nm) in the presence of a RuII photosensitizer and an electron donor. This system gave HCOOH as the main product with 80-90 % selectivity and an apparent quantum yield of 4.3 % at 460 nm, as confirmed by isotope tracer experiments with 13 CO2 . The present work shows that the use of a proper support material is another method of catalyst activation toward the selective reduction of CO2 .

3.
Beilstein J Org Chem ; 14: 1806-1812, 2018.
Article in English | MEDLINE | ID: mdl-30112084

ABSTRACT

Graphitic carbon nitride (g-C3N4) was synthesized by heating urea at different temperatures (773-923 K) in air, and was examined as a photocatalyst for CO2 reduction. With increasing synthesis temperature, the conversion of urea into g-C3N4 was facilitated, as confirmed by X-ray diffraction, FTIR spectroscopy and elemental analysis. The as-synthesized g-C3N4 samples, further modified with Ag nanoparticles, were capable of reducing CO2 into formate under visible light (λ > 400 nm) in the presence of triethanolamine as an electron donor, with the aid of a molecular Ru(II) cocatalyst (RuP). The CO2 reduction activity was improved by increasing the synthesis temperature of g-C3N4, with the maximum activity obtained at 873-923 K. This trend was also consistent with that observed in photocatalytic H2 evolution using Pt-loaded g-C3N4. The photocatalytic activities of RuP/g-C3N4 for CO2 reduction and H2 evolution were thus shown to be strongly associated with the generation of the crystallized g-C3N4 phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...