Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(47): 25632-25642, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37943571

ABSTRACT

Owing to high ionic conductivity and mechanical strength, poly(vinylidene fluoride) (PVDF) electrolytes have attracted increasing attention for solid-state lithium batteries, but highly reactive residual solvents severely plague cycling stability. Herein, we report a free-solvent-capturing strategy triggered by reinforced ion-dipole interactions between Li+ and residual solvent molecules. Lithium difluoro(oxalato)borate (LiDFOB) salt additive with electron-withdrawing capability serves as a redistributor of the Li+ electropositive state, which offers more binding sites for residual solvents. Benefiting from the modified coordination environment, the kinetically stable anion-derived interphases are preferentially formed, effectively mitigating the interfacial side reactions between the electrodes and electrolytes. As a result, the assembled solid-state battery shows a lifetime of over 2000 cycles with an average Coulombic efficiency of 99.9% and capacity retention of 80%. Our discovery sheds fresh light on the targeted regulation of the reactive residual solvent to extend the cycle life of solid-state batteries.

3.
Natl Sci Rev ; 10(3): nwac272, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36875785

ABSTRACT

Simultaneously achieving high electrochemical activity and high loading for solid-state batteries has been hindered by slow ion transport within solid electrodes, in particular with an increase in electrode thickness. Ion transport governed by 'point-to-point' diffusion inside a solid-state electrode is challenging, but still remains elusive. Herein, synchronized electrochemical analysis using X-ray tomography and ptychography reveals new insights into the nature of slow ion transport in solid-state electrodes. Thickness-dependent delithiation kinetics are spatially probed to identify that low-delithiation kinetics originate from the high tortuous and slow longitudinal transport pathways. By fabricating a tortuosity-gradient electrode to create an effective ion-percolation network, the tortuosity-gradient electrode architecture promotes fast charge transport, migrates the heterogeneous solid-state reaction, enhances electrochemical activity and extends cycle life in thick solid-state electrodes. These findings establish effective transport pathways as key design principles for realizing the promise of solid-state high-loading cathodes.

4.
ACS Nano ; 16(11): 19584-19593, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36346709

ABSTRACT

Owing to abundant polar groups and good lithiophilicity, protein materials regain interest for application in lithium metal batteries (LMBs). Current proteins with an α-conformation for modifying lithium (Li) anodes possess typically poor mechanical properties, and there is therefore a significant need for advanced protein materials. Herein, a lysozyme-modified layer is coated onto the poly(vinylidene fluoride) electrospun mat for high mechanical strength and uniform Li-ion flux. The lysozyme membrane can regulate Li+ deposition behavior due to complete ß-sheet configuration, high lithiophilicity sulfhydryl groups, and columnar nanopores. As a result, the lysozyme-modified Li metal anode exhibits a high stability performance of Li-Li symmetric cells (2800 h) and Li-LiFePO4 full cell (1450 cycles). Our strategy pushes the protein with ß-sheet configuration toward the applications of next-generation LMBs.


Subject(s)
Lithium , Muramidase , Amyloid beta-Peptides
5.
Sci Adv ; 8(35): eabq6261, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36054349

ABSTRACT

Solid-state Li-O2 batteries (SSLOBs) have attracted considerable attention because of their high energy density and superior safety. However, their sluggish kinetics have severely impeded their practical application. Despite efforts to design highly efficient catalysts, efficient oxygen reaction evolution at gas-solid interfaces and fast transport pathways in solid-state electrodes remain challenging. Here, we develop a dual electronic-ionic microenvironment to substantially enhance oxygen electrolysis in solid-state batteries. By designing a lithium-decorative catalyst with an engineering crystal structure, the coordinatively unsaturated sites and high concentration of defects alleviate the limitations of electronic-ionic transport in solid interfaces and create a balanced gas-solid microenvironment for solid-state oxygen electrolysis. This strategy facilitates oxygen reduction reaction, mediates the transport of reaction species, and promotes the decomposition of the discharge products, contributing to a high specific capacity with a stable cycling life. Our work provides previously unknown insight into structure-property relationships in solid-state electrolysis for SSLOBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...