Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36295960

ABSTRACT

To realize portable gas sensor applications, it is necessary to develop hydrogen sulfide (H2S) microsensors capable of operating at lower voltages with high response, good selectivity and stability, and fast response and recovery times. A gas sensor with a high operating voltage (>5 V) is not suitable for portable applications because it demands additional circuitry, such as a charge pump circuit (supply voltage of common circuits is approximately 1.8−5 V). Among H2S microsensor components, that is, the substrate, sensing area, electrode, and micro-heater, the proper design of the micro-heater is particularly important, owing to the role of thermal energy in ensuring the efficient detection of H2S. This study proposes and develops tin (IV)-oxide (SnO2)-based H2S microsensors with different geometrically designed embedded micro-heaters. The proposed micro-heaters affect the operating temperature of the H2S sensors, and the micro-heater with a rectangular mesh pattern exhibits superior heating performance at a relatively low operating voltage (3−4 V) compared to those with line (5−7 V) and rectangular patterns (3−5 V). Moreover, utilizing a micro-heater with a rectangular mesh pattern, the fabricated SnO2-based H2S microsensor was driven at a low operating voltage and offered good detection capability at a low H2S concentration (0−10 ppm), with a quick response (<51 s) and recovery time (<101 s).

2.
Nanomaterials (Basel) ; 12(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36145014

ABSTRACT

Hydrogen (H2) is attracting attention as a renewable energy source in various fields. However, H2 has a potential danger that it can easily cause a backfire or explosion owing to minor external factors. Therefore, H2 gas monitoring is significant, particularly near the lower explosive limit. Herein, tin dioxide (SnO2) thin films were annealed at different times. The as-obtained thin films were used as sensing materials for H2 gas. Here, the performance of the SnO2 thin film sensor was studied to understand the effect of annealing and operating temperature conditions of gas sensors to further improve their performance. The gas sensing properties exhibited by the 3-h annealed SnO2 thin film showed the highest response compared to the unannealed SnO2 thin film by approximately 1.5 times. The as-deposited SnO2 thin film showed a high response and fast response time to 5% H2 gas at 300 °C of 257.34% and 3 s, respectively.

3.
J Nanosci Nanotechnol ; 21(7): 3707-3710, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33715678

ABSTRACT

As hydrogen (H2) gas is highly reactive and explosive in ambient atmosphere, its prompt detection in industrial areas is imperative to prevent serious accidents. In particular, high-performance H2 sensors that can promptly detect even low-concentrations of H2 gas are necessary for safety. Carbon nanotubes (CNTs) have a large surface area and a high surface-to-volume ratio, and therefore, they are suitable for use as sensing materials in gas sensors. Moreover, gold, platinum, and palladium are known to be excellent catalyst metals that increase reactivity with H2 gas through the catalytic effect referred to as spill-over mechanism. In this study, a CNT felt sensor with a palladium (Pd) layer was fabricated, and its reactivity with H2 was evaluated. The sensitivity of a CNT felt sensor to H2 gas at room temperature was found to improve when coated with Pd layer.


Subject(s)
Nanotubes, Carbon , Palladium , Gold , Hydrogen , Platinum
4.
J Nanosci Nanotechnol ; 20(7): 4011-4014, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31968415

ABSTRACT

The proposed study describes the development of a carbon nanotube (CNT)-based gas sensor capable of detecting the presence of hydrogen (H2) gas at room temperature. CNT yarn used in the proposed sensor was fabricated from synthesized CNT arrays. Subsequently, the yarn was treated by means of a simple one-step procedure, called acid treatment, to facilitate removal of impurities from the yarn surface and forming functional species. To verify the proposed sensor's effectiveness with regard to detection of H2 gas at room temperature, acid-treated CNT and pure yarns were fabricated and tested under identical conditions. Corresponding results demonstrate that compared to the untreated CNT yarn, the acid-treated CNT yarn exhibits higher sensitivity to the presence of H2 gas at room temperature. Additionally, the acid-treated CNT yarn was observed to demonstrate excellent selectivity pertaining to H2 gas.

5.
J Nanosci Nanotechnol ; 20(7): 4470-4473, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31968499

ABSTRACT

Palladium-coated multi-walled carbon nanotube (Pd-MWCNT) nanocomposites have been experimentally proven to show highly improved hydrogen (H2) gas detection characteristics at room temperature when compared with single MWCNTs. In this context, we develop an efficient and convenient method for forming nanocomposites by coating Pd nanoparticles on an MWCNT film. Furthermore, we test the applicability of the nanocomposites as sensing materials in detecting H2 gas at room temperature in a reliable and sensitive manner in contrast with ordinary metal-oxidebased gas sensors that operate at high temperatures. We first study the detection efficacy of the Pd-MWCNT film relative to pure MWCNT film. Subsequently, we investigate the Pd-MWCNT sensor's sensitivity over time for different gas concentrations, the sensor response time, and sensor reproducibility and reliability under various conditions including bending tests. Our sensor exhibits stable reliable detection characteristics and excellent structural flexibility.

6.
Environ Technol ; 38(21): 2700-2708, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27973983

ABSTRACT

In this study, we fabricated a nanofibrous composite (NFC) membrane as a substrate to produce forward osmosis (FO) membranes, and we also assessed the use of liquid fertilizer as a draw solution for the FO process in order to produce agricultural irrigation water. Commercial cellulose triacetate (CTA) and thin-film composite (TFC) FO membranes were included in this study. Under FO tests, the NFC, CTA, and TFC membranes achieved initial osmotic water flux values of 35.31, 6.85, and 3.31 L/m2·h and final osmotic water flux values of 12.62, 6.31, and 3.85 L/m2 h, respectively. The reason for the high osmotic water flux of the NFC membrane is because its nanofiber layer has low tortuosity, high porosity, and a low thickness, resulting in a reduction in the internal concentration polarization phenomenon. When liquid fertilizer was used as the draw solution, the water flux values in the FO experiments for the NFC, CTA, and TFC membranes were 15.54, 5.46, and 2.54 L/m2 h. Finally, our results revealed that the FO process using liquid fertilizer as a draw solution can be applied to produce agricultural irrigation water from brackish water and the newly fabricated NFC membrane can be applied to the FO process.


Subject(s)
Fertilizers , Nanofibers , Water Purification , Membranes, Artificial , Osmosis , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...