Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 81(1): 77-90, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32967925

ABSTRACT

Histone methyltransferase NSD3 is frequently dysregulated in human cancers, yet the epigenetic role of NSD3 during cancer development remains elusive. Here we report that NSD3-induced methylation of H3K36 is crucial for breast tumor initiation and metastasis. In patients with breast cancer, elevated expression of NSD3 was associated with recurrence, distant metastasis, and poor survival. In vivo, NSD3 promoted malignant transformation of mammary epithelial cells, a function comparable to that of HRAS. Furthermore, NSD3 expanded breast cancer-initiating cells and promoted epithelial-mesenchymal transition to trigger tumor invasion and metastasis. Mechanistically, the long isoform (full-length transcript) of NSD3, but not its shorter isoform lacking a catalytic domain, cooperated with EZH2 and RNA polymerase II to stimulate H3K36me2/3-dependent transactivation of genes associated with NOTCH receptor cleavage, leading to nuclear accumulation of NICD and NICD-mediated transcriptional repression of E-cadherin. Furthermore, mice harboring primary and metastatic breast tumors with overexpressed NSD3 showed sensitivity to NOTCH inhibition. Together, our findings uncover the critical epigenetic role of NSD3 in the modulation of NOTCH-dependent breast tumor progression, providing a rationale for targeting the NSD3-NOTCH signaling regulatory axis in aggressive breast cancer. SIGNIFICANCE: This study demonstrates the functional significance of histone methyltransferase NSD3 in epigenetic regulation of breast cancer stemness, EMT, and metastasis, suggesting NSD3 as an actionable therapeutic target in metastatic breast cancer.


Subject(s)
Breast Neoplasms/pathology , DNA Methylation , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Lung Neoplasms/secondary , Nuclear Proteins/metabolism , Receptor, Notch1/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Movement , Cell Proliferation , Epigenesis, Genetic , Female , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Nuclear Proteins/genetics , Prognosis , Receptor, Notch1/genetics , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
EMBO Rep ; 20(10): e48058, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31468695

ABSTRACT

Cyclin-dependent kinase 12 (CDK12) has emerged as an effective therapeutic target due to its ability to regulate DNA damage repair in human cancers, but little is known about the role of CDK12 in driving tumorigenesis. Here, we demonstrate that CDK12 promotes tumor initiation as a novel regulator of cancer stem cells (CSCs) and induces anti-HER2 therapy resistance in human breast cancer. High CDK12 expression caused by concurrent amplification of CDK12 and HER2 in breast cancer patients is associated with disease recurrence and poor survival. CDK12 induces self-renewal of breast CSCs and in vivo tumor-initiating ability, and also reduces susceptibility to trastuzumab. Furthermore, CDK12 kinase activity inhibition facilitates anticancer efficacy of trastuzumab in HER2+ tumors, and mice bearing trastuzumab-resistant HER2+ tumor show sensitivity to an inhibitor of CDK12. Mechanistically, the catalytic activity of CDK12 is required for the expression of genes involved in the activation of ErbB-PI3K-AKT or WNT-signaling cascades. These results suggest that CDK12 is a major oncogenic driver and an actionable target for HER2+ breast cancer to replace or augment current anti-HER2 therapies.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Carcinogenesis/pathology , Cyclin-Dependent Kinases/metabolism , Drug Resistance, Neoplasm , Signal Transduction , Trastuzumab/therapeutic use , Animals , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Chromosomes, Human, Pair 17/genetics , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Insulin Receptor Substrate Proteins/metabolism , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Protein Binding/drug effects , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-3/metabolism , Trastuzumab/pharmacology , Up-Regulation/drug effects , Up-Regulation/genetics , Wnt Signaling Pathway
3.
J Natl Cancer Inst ; 111(6): 609-619, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30265336

ABSTRACT

BACKGROUND: Resistance to HER2-targeted therapy with trastuzumab still remains a major challenge in HER2-amplified tumors. Here we investigated the potential role of MEL-18, a polycomb group gene, as a novel prognostic marker for trastuzumab resistance in HER2-positive (HER2+) breast cancer. METHODS: The genetic alteration of MEL-18 and its clinical relevance were examined in multiple breast cancer cohorts including METABRIC (n = 1,980), TCGA (n = 825), and our clinical specimens (n = 213, trastuzumab-treated HER2+ cases). MEL-18 amplification was validated by fluorescence in situ hybridization (FISH) analysis. The MEL-18 effect on trastuzumab response was confirmed by in vitro cell viability assays and an in vivo xenograft experiment (n = 7 per group). Gene expression microarray and receptor tyrosine kinase array were performed to identify the trastuzumab resistance mechanism by MEL-18 loss. All statistical tests were two-sided. RESULTS: MEL-18 was exclusively amplified in approximately 30-50% of HER2+ breast tumors and was associated with a favorable clinical outcome (disease-free survival: P = .02 in HER2+ cases, METABRIC; P = .04 in patients receiving trastuzumab). In MEL-18-amplified HER2+ breast cancer, MEL-18 depletion induced trastuzumab resistance by increasing ADAM sheddase-mediated ErbB ligand production and receptor heterodimerization. MEL-18 epigenetically silenced ADAM10/17 expression in cooperation with polycomb-repressive complex (PRC) 1 and PRC2. Combination treatment with an ADAM10/17 inhibitor and trastuzumab could overcome MEL-18 loss-mediated trastuzumab resistance in vivo (BT474/shMEL-18 xenograft: trastuzumab, mean [SD] tumor volume = 406.1 [50.1] mm3, vs trastuzumab + GW280264 30 mg/kg, mean [SD] tumor volume = 68.4 [15.6] mm3, P < .001). Consistently, trastuzumab-treated patients harboring concomitant MEL-18 amplification and low ADAM17 expression showed prolonged relapse-free survival (P = .02 in our cohort, n = 213). CONCLUSION: MEL-18 serves to prevent ligand-dependent ErbB heterodimerization and trastuzumab resistance, suggesting MEL-18 amplification as a novel biomarker for HER2+ breast cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Polycomb Repressive Complex 1/genetics , Receptor, ErbB-2/antagonists & inhibitors , ADAM10 Protein/antagonists & inhibitors , ADAM10 Protein/metabolism , ADAM17 Protein/antagonists & inhibitors , ADAM17 Protein/metabolism , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Gene Amplification , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Trastuzumab/administration & dosage , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...