Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Chem Commun (Camb) ; 60(15): 2009-2021, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38275083

ABSTRACT

Self-assembly is an important strategy for constructing ordered structures and complex functions in nature. Based on this, people can imitate nature and artificially construct functional materials with novel structures through the supermolecular self-assembly pathway of biological interfaces. Among the many assembly units, peptide molecular self-assembly has received widespread attention in recent years. In this review, we introduce the interactions (hydrophobic interaction, hydrogen bond, and electrostatic interaction) between peptide nanomaterials and biological interfaces, summarizing the latest advancements in multifunctional self-assembling peptide materials. We systematically demonstrate the assembly mechanisms of peptides at biological interfaces, such as proteins and cell membranes, while highlighting their application potential and challenges in fields like drug delivery, antibacterial strategies, and cancer therapy.


Subject(s)
Nanostructures , Peptides , Humans , Peptides/chemistry , Nanostructures/chemistry , Drug Delivery Systems
2.
Adv Mater ; : e2306248, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37897408

ABSTRACT

Smart nanorobots have emerged as novel drug delivery platforms in nanomedicine, potentially improving anti-cancer efficacy and reducing side effects. In this study, an intelligent tumor microenvironment-responsive nanorobot is developed that effectively delivers CpG payloads to Toll-like receptor 9 (TLR9)-positive tumors to induce autophagy-mediated cell death for immunotherapy. The nanorobots are fabricated by co-self-assembly of two amphiphilic triblock polymer peptides: one containing the matrix metallopeptidase 2 (MMP2)-cleaved GPLGVRGS motif to control the mechanical opening of the nanorobots and provide targeting capability for TLR-9-positive tumors and the other consisting of an arginine-rich GRRRDRGRS sequence that can condense nuclear acid payloads through electrostatic interactions. Using multiple tumor-bearing mouse models, it is investigated whether the intravenous injection of CpG-loaded nanorobots could effectively deliver CpG payloads to TLR-9-positive tumors and elicit anti-tumor immunity through TLR9 signaling and autophagy. Therefore, besides being a commonly used adjuvant for tumor vaccination, CpG-loaded nanorobots can effectively reprogram the tumor immunosuppressive microenvironment and suppress tumor growth and recurrence. This nanorobot-based CpG immunotherapy can be considered a feasible approach to induce anti-tumor immunity, showing great therapeutic potential for the future treatment of TLR9-positive cancers.

3.
J Pharm Biomed Anal ; 236: 115754, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37783051

ABSTRACT

Sensitive and accurate detection of interleukin 6 (IL-6) is crucial for the early diagnosis of cerebral infarction to improve patient survival rates. However, the low-abundance of IL-6 in cerebral infarction presents a significant challenge in developing effective diagnosis method. Herein, we studied and analyzed the strong fluorescence property of 4-aminophenol phosphate (APP) and developed an enzyme-linked immunosorbent assay (ELISA) for IL-6 detection. The detection was based on the integration of optical signal change induced by alkaline phosphatase (ALP)-catalyzed APP hydrolysis and ALP-mediated ELISA. The generated colorimetric signal of 4-aminophenol, APP hydrolysis product, was used for ELISA of IL-6 with a detection limit of 0.1 ng/mL, and the visual detection of IL-6 was achieved. The changes in APP fluorescence have a good linear relationship with the logarithm of IL-6 concentration in the range of 0.005 ng/mL to 5.0 ng/mL, with a detection limit of 0.001 ng/mL, which was 100 times lower than that of conventional pNPP-based ELISA. Furthermore, the constructed ELISA effectively distinguished between samples from patients with cerebral infarction and volunteers with non-cerebral infarction, and the severity of symptoms was well distinguished based on IL-6 measurement. The dual-mode ELISA demonstrated high feasibility of low-abundance biomarker detection and displayed good potential for accurate in vitro diagnosis.


Subject(s)
Alkaline Phosphatase , Interleukin-6 , Humans , Hydrolysis , Phosphates , Enzyme-Linked Immunosorbent Assay/methods , Catalysis , Cerebral Infarction , Limit of Detection
4.
Angew Chem Int Ed Engl ; 62(37): e202308049, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37486792

ABSTRACT

Proteolysis targeting chimera (PROTAC) is an emerging pharmacological modality with innovated post-translational protein degradation capabilities. However, off-target induced unintended tissue effects and intrinsic "hook effect" hinder PROTAC biotechnology to be maturely developed. Herein, an intracellular fabricated nano proteolysis targeting chimeras (Nano-PROTACs) modality with a center-spoke degradation network for achieving efficient dose-dependent protein degradation in tumor is reported. The PROTAC precursors are triggered by higher GSH concentrations inside tumor cells, which subsequently in situ self-assemble into Nano-PROTACs through intermolecular hydrogen bond interactions. The fibrous Nano-PROTACs can form effective polynary complexes and E3 ligases degradation network with multi-binding sites, achieving dose-dependent protein degradation with "anti-hook effect". The generality and efficacy of Nano-PROTACs are validated by degrading variable protein of interest (POI) such as epidermal growth factor receptor (EGFR) and androgen receptor (AR) in a wide-range dose-dependent manner with a 95 % degradation rate and long-lasting potency up to 72 h in vitro. Significantly, Nano-PROTACs achieve in vivo dose-dependent protein degradation up to 79 % and tumor growth inhibition in A549 and LNCap xenograft mice models, respectively. Taking advantages of in situ self-assembly strategy, the Nano-PROTACs provide a generalizable platform to promote precise clinical translational application of PROTAC.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Animals , Mice , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Binding Sites
5.
Adv Healthc Mater ; 12(27): e2301162, 2023 10.
Article in English | MEDLINE | ID: mdl-37449948

ABSTRACT

Bioactive macromolecules show great promise for the treatment of various diseases. However, the cytosolic delivery of peptide-based drugs remains a challenging task owing to the existence of multiple intracellular barriers and ineffective endosomal escape. To address these issues, herein, programmable self-assembling peptide vectors are reported to amplify cargo internalization into the cytoplasm through receptor-activated macropinocytosis. Programmable self-assembling peptide vector-active human epidermal growth factor receptor-2 (HER2) signaling induces the receptor-activated macropinocytosis pathway, achieving efficient uptake in tumor cells. Shrinking macropinosomes accelerate the process of assembly dynamics and form nanostructures in the cytoplasm to increase peptide-based cargo accumulation and retention. Inductively coupled plasma mass (ICP-MS) spectrometry quantitative analysis indicates that the Gd delivery efficiency in tumor tissue through the macropinocytosis pathway is improved 2.5-fold compared with that through the use of active targeting molecular delivery. Finally, compared with nanoparticles and active targeting delivery, the delivery of bioactive peptide drugs through the self-assembly of peptide vectors maintains high drug activity (the IC50 decreased twofold) in the cytoplasm and achieves effective inhibition of tumor cell growth. Programmable self-assembling peptide vectors represent a promising platform for the intracellular delivery of diverse bioactive drugs, including molecular drugs, peptides, and biologics.


Subject(s)
Nanostructures , Peptides , Humans , Peptides/chemistry , Pinocytosis , Cytosol/metabolism , Endosomes/metabolism , Carrier Proteins/metabolism
6.
Adv Mater ; 35(45): e2303831, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37462447

ABSTRACT

Anti-PD-L1 monoclonal antibody has achieved substantial success in tumor immunotherapy by T-cells activation. However, the excessive accumulation of extracellular matrix components induced by unsatisfactory T-cells infiltration and poor tumor penetration of antibodies make it challenging to realize efficient tumor immunotherapy. Herein, a peptide-based bispecific nanoblocker (BNB) strategy is reported for in situ construction of CXCR4/PD-L1 targeted nanoclusters on the surface of tumor cells that are capable of boosting T-cells infiltration through CXCR4 blockage and enhancing T-cells activation by PD-L1 occupancy, ultimately realizing high-performance tumor immunotherapy. Briefly, the BNB strategy selectively recognizes and bonds CXCR4/PD-L1 with deep tumor penetration, which rapidly self-assembles into nanoclusters on the surface of tumor cells. Compared to the traditional bispecific antibody, BNB exhibits an intriguing metabolic behavior, that is, the elimination half-life (t1/2 ) of BNB in the tumor is 69.3 h which is ≈50 times longer than that in the plasma (1.4 h). The higher tumor accumulation and rapid systemic clearance overcome potential systemic side effects. Moreover, the solid tumor stress generated by excessive extracellular matrix components is substantially reduced to 44%, which promotes T-cells infiltration and activation for immunotherapy efficacy. Finally, these findings substantially strengthen and extend clinical applications of PD-1/PD-L1 immunotherapy.


Subject(s)
Antibodies, Bispecific , Neoplasms , Humans , B7-H1 Antigen/metabolism , Cell Line, Tumor , Neoplasms/therapy , Antibodies, Bispecific/therapeutic use , T-Lymphocytes/metabolism , Immunotherapy
7.
Adv Mater ; : e2305099, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37490938

ABSTRACT

Materialomics integrates experiment, theory, and computation in a high-throughput manner, and has changed the paradigm for the research and development of new functional materials. Recently, with the rapid development of high-throughput characterization and machine-learning technologies, the establishment of biomaterialomics that tackles complex physiological behaviors has become accessible. Breakthroughs in the clinical translation of nanoparticle-based therapeutics and vaccines have been observed. Herein, recent advances in biomaterials, including polymers, lipid-like materials, and peptides/proteins, discovered through high-throughput screening or machine learning-assisted methods, are summarized. The molecular design of structure-diversified libraries; high-throughput characterization, screening, and preparation; and, their applications in drug delivery and clinical translation are discussed in detail. Furthermore, the prospects and main challenges in future biomaterialomics and high-throughput screening development are highlighted.

8.
Sci Adv ; 9(9): eabq8225, 2023 03.
Article in English | MEDLINE | ID: mdl-36857458

ABSTRACT

Up to 75% of bladder cancer patients suffer from recurrence due to postoperative tumor implantation. However, clinically used Bacillus Calmette-Guerin (BCG) treatment failed to inhibit the recurrence. Here, we report a bispecific glycopeptide (bsGP) that simultaneously targets CD206 on tumor-associated macrophages (TAMs) and CXCR4 on tumor cells. bsGP repolarizes protumoral M2-like TAMs to antitumor M1-like that mediated cytotoxicity and T cell recruitment. Meanwhile, bsGP is cleaved by the MMP-2 enzyme to form nanostructure for the long-term inhibition of CXCR4 downstream signaling, resulting in reduced tumor metastasis and promoted T cell infiltration. In orthotopic bladder tumor models, bsGP reduced the postoperative recurrence rate to 22%. In parallel, the recurrence rates of 89 and 78% were treated by doxycycline and BCG used in clinic, respectively. Mechanistic studies reveal that bsGP reduces the matrix microenvironment barrier, increasing the spatially redirected CD8+ T cells to tumor cells. We envision that bis-targeting CD206 and CXCR4 may pave the way to inhibit tumor metastasis and recurrence.


Subject(s)
Tumor Microenvironment , Urinary Bladder Neoplasms , Humans , BCG Vaccine , CD8-Positive T-Lymphocytes , Neoplasm Recurrence, Local , Glycopeptides
9.
Adv Mater ; 35(24): e2211332, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36971342

ABSTRACT

The tumor-associated macrophages (TAMs) in intratumoral hypoxic regions are key drivers of immune escape. Reprogramming the hypoxic TAMs to antitumor phenotype holds great therapeutic benefits but remains challenging for current drugs. Here, an in situ activated nanoglycocluster is reported to realize effective tumor penetration and potent repolarization of hypoxic TAMs. Triggered by the hypoxia-upregulated matrix metalloproteinase-2 (MMP-2), the nanoglycocluster is self-assembled from the administered mannose-containing precursor glycopeptides and presents densely-arrayed mannoses to multivalently engage with mannose receptors on M2-like TAMs for efficient phenotype switch. By virtue of the high diffusivity of precursor glycopeptides due to their low molecular mass and weak affinity with TAMs in perivascular regions, the nanoglycoclusters are capable of substantially accumulating in hypoxic areas to strongly interact with local TAMs. This enables the efficient repolarization of overall TAMs with a higher rate than the small-molecule drug R848 and CD40 antibody, and beneficial therapeutic effects in mouse tumor models especially when combining with PD-1 antibody. This on-demand activated immunoagent is endowed with tumor-penetrating properties and inspires the design of diverse intelligent nanomedicines for hypoxia-related cancer immunotherapy.


Subject(s)
Neoplasms , Tumor-Associated Macrophages , Animals , Mice , Matrix Metalloproteinase 2 , Macrophages , Immunotherapy , Neoplasms/therapy , Neoplasms/pathology , Hypoxia , Glycopeptides/pharmacology , Tumor Microenvironment
10.
Brain Res ; 1805: 148247, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36669713

ABSTRACT

Traditional Chinese medicine has emerged as promising targets for ischemic stroke (IS) therapy, yet the mechanism remains elusive. The current study was performed with an aim to investigate the action and mechanism of Tongqiao Huoxue decoction (TQHXD) affecting the neurological impairment secondary to IS based on network pharmacology. Based on network pharmacology and bioinformatics analysis, target genes and pathways involved in the treatment of TQHXD against IS were predicted. Serum containing TQHXD was prepared through blood collection from C57BL/6 mice after intragastric administration of TQHXD. The main results exhibited that Prostaglandin-endoperoxide synthase 2 (PTGS2) exhibited an abundance in IS and enrichment in the NF-kappa B signaling pathway, holding the potential as targets related to TQHXD treatment for IS. TQHXD was found to rescue cell viability, inhibit apoptosis, and alleviate inflammation under oxygen and glucose deprivation and reoxygenation (OGD/R) exposure. Furthermore, our in vivo experiment validated the protective function of TQHXD in ischemic brain damage stimulated by middle cerebral artery occlusion (MCAO). This protective action of TQHXD could be attenuated by overexpressing nuclear factor (NF)-kappa B, which was dependent on PTGS2. Collectively, TQHXD was demonstrated to ameliorate IS-induced neurological impairment by blocking the NF-kappa B signaling pathway and down-regulating PTGS2.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Mice , Animals , NF-kappa B/metabolism , Cyclooxygenase 2/metabolism , Mice, Inbred C57BL , Signal Transduction/genetics , Stroke/genetics , Brain Ischemia/genetics
11.
Nano Res ; 16(4): 5383-5390, 2023.
Article in English | MEDLINE | ID: mdl-35992363

ABSTRACT

The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has necessitated rapid, easy-to-use, and accurate diagnostic methods to monitor the virus infection. Herein, a ratiometric fluorescence enzyme-linked immunosorbent assay (ELISA) was developed using Si-fluorescein isothiocyanate nanoparticles (FITC NPs) for detecting SARS-CoV-2 nucleocapsid (N) protein. Si-FITC NPs were prepared by a one-pot hydrothermal method using 3-aminopropyl triethoxysilane (APTES)-FITC as the Si source. This method did not need post-modification and avoided the reduction in quantum yield and stability. The p-nitrophenyl (pNP) produced by the alkaline phosphatase (ALP)-mediated hydrolysis of p-nitrophenyl phosphate (pNPP) could quench Si fluorescence in Si-FITC NPs via the inner filter effect. In ELISA, an immunocomplex was formed by the recognition of capture antibody/N protein/reporter antibody. ALP-linked secondary antibody bound to the reporter antibody and induced pNPP hydrolysis to specifically quench Si fluorescence in Si-FITC NPs. The change in fluorescence intensity ratio could be used for detecting N protein, with a wide linearity range (0.01-10.0 and 50-300 ng/mL) and low detection limit (0.002 ng/mL). The concentration of spiked SARS-CoV-2 N protein could be determined accurately in human serum. Moreover, this proposed method can accurately distinguish coronavirus disease 2019 (COVID-19) and non-COVID-19 patient samples. Therefore, this simple, sensitive, and accurate method can be applied for the early diagnosis of SARS-CoV-2 virus infection. Electronic Supplementary Material: Supplementary material (characterization of Si-FITC NPs (FTIR spectrum, XRD spectra, and synchronous fluorescence spectra); condition optimization of ALP response (fluorescence intensity ratio change); mechanism investigation of ALP response (fluorescence lifetime decay curves and UV-vis absorption spectra); detection of N protein using commercial ELISA Kit; analytical performance of assays for ALP detection or SARS-CoV-2 N protein detection; and determination results of SARS-CoV-2 N protein in human serum) is available in the online version of this article at 10.1007/s12274-022-4740-5.

12.
Ann Transl Med ; 10(16): 909, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36111049

ABSTRACT

Background: Intracranial atherosclerotic stenosis (ICAS) is one of the leading causes of stroke worldwide. Current diagnostic evaluations and treatments remain insufficient to assess the vulnerability of intracranial plaques and reduce the recurrence of stroke in symptomatic ICAS. On the other hand, asymptomatic ICAS is associated with an increased risk of cognitive impairment. The pathogenesis of ICAS related cognitive decline is largely unknown. The aim of SICO-ICAS study (stroke incidence and cognitive outcomes of ICAS) is to elucidate the pathophysiology of stroke and cognitive impairment in ICAS population, comprehensively evaluating the complex interactions among life-course exposure, genomic variation, vascular risk factors, cerebrovascular burden and coexisting neurodegeneration. Methods: SICO-ICAS is a multicenter, prospective, observational cohort study. We aim to recruit 3,000 patients with symptomatic or asymptomatic ICAS (>50% or occlusion) who will be followed up for ≥12 months. All participants will undergo pre-designed magnetic resonance imaging packages, blood biomarkers testing, as well as detailed cognitive domains assessment. All participants will undergo clinical visits every 6 months and telephone interviews every 3 months. The primary outcome measurement is ischemic stroke or cognitive impairment within 12 months after enrollment. Discussion: This study will establish a large prospective ICAS cohort, hopefully discover new biomarkers associated with vulnerable intracranial plaques, identify subjects at high risk for incident ischemic stroke or cognitive impairment, and eventually propose a precise diagnostic and treatment strategy for ICAS population. Trial Registration: Chinese Clinical Trials Register ChiCTR2200061938.

13.
Ann Transl Med ; 10(14): 791, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35965824

ABSTRACT

Background: Traditional Chinese medicine (TCM) has become a crucial direction for ischemic stroke treatment. This study sought to explore the underlying roles of YaoYi-moxibustion (YY-moxi) in ischemic stroke. Methods: A total of 75 Sprague-Dawley rats were randomly divided into the following 5 groups: (I) the sham-operated group; (II) the middle cerebral artery occlusion model (MCAO) group; (III) the YY-moxi group; (IV) the antioxidant (N-acetylcysteine, NAC) group; and (V) the NAC + YY-moxi group. After the model had been established, the NAC group received intracerebroventricular injections of NAC, the YY-moxi group received YY-moxi, and the NAC + YY-moxi group received a combination of these 2 interventions. The neurological deficit score was confirmed, and the cerebral infarction was examined by triphenyl tetrazolium chloride (TTC) staining. In the ischemia site of stroke, terminal deoxynucleotidyl transferase-mediated Dutp nick end labeling staining was applied to examine the apoptotic cells. Additionally, the apoptosis-associated genes and protein expressions in the ischemic brains were investigated by the reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), immunohistochemistry, and western blot analysis. Results: YY-moxi alone and YY-moxi combined with NAC significantly reduced the neurological scores and cerebral infarction area of the MCAO rats. Additionally, YY-moxi alone and the combined application of YY-moxi and NAC improved the pathological status of ischemic brain tissues. Further, we found that YY-moxi alone and YY-moxi in combination with NAC could enhanced the antioxidation ability and reduced the inflammatory response of the MCAO model rats. We also proved that YY-moxi alone and YY-moxi combined with NAC significantly suppressed apoptosis-related proteins in the MCAO model rats. Conclusions: These findings indicate that YY-moxi exerts a protective effect on cerebral ischemic injury by reducing apoptosis. The study suggests that the mechanism may be related to its downregulating the expression of nuclear factor kappa B (NK-κB).

14.
Biomaterials ; 287: 121655, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35810541

ABSTRACT

Aggregation-induced emission luminogens (AIEgens) possess enhanced fluorescence in highly aggregated states, thus enabling AIEgens as a promising module for highly emissive fluorescence biomaterials. So far, AIEgens-based nanomaterials and their hybrids have been reported for biomedical applications. Benefiting from the intrinsic biocompatibility and biofunction-editing properties of peptides, peptide-AIEgens hybrid biomaterials reveal unlimited possibilities including target capacity, specificity, stimuli-responsiveness, self-assembly, controllable structural transformation, etc.. In the last two decades, peptide-AIEgens hybrid nanomaterials with a unique design concept in aggregated states have achieved various biomedical applications such as biosensing, bioimaging, imaging-guided surgery, drug delivery and therapy. More recently, programmable design of peptide-AIEgens for in situ self-assembly provides a unique strategy for constructing intelligent entities with defined biological functions. In this review, we summarize the basic design principle of programmable peptide-AIEgens, structure-effect relationship and their unusual biomedical effects. Finally, an outlook and perspective toward future challenges and developments of peptide-AIEgens nanomaterials are concluded.

15.
Biomaterials ; 284: 121488, 2022 05.
Article in English | MEDLINE | ID: mdl-35367840

ABSTRACT

Due to intrinsic and acquired chemo/radiotherapy-resistance, renal cell carcinoma shows limited therapeutic response to clinically utilized targeting drugs. Here a tumor-activated oncolytic peptide nanomachine is devised to selectively lysing tumor cell membrane without causing drug resistance. Specifically, in the acidic tumor microenvironment, the oncolytic peptide nanomachine automatically activated through morphologically transformation from nanoparticles to nanofibrils with restoring α-helical conformation, which physically bind to tumor cell membrane with multiple (spatially correlated and time-resolved) interactions and subsequently lyse local cell membrane. The IC50 of the oncolytic peptide nanomachine is as low as 2.44 µM and it inhibit up to 90% of tumor cells within 2 h with unique bystander killing effect. In vivo, the tumor inhibition rate of the oncolytic peptide nanomachine is 71% without off-target activity and hemolytic activity. These results support that tumor-selective oncolytic peptide nanomachine represent a promising alternative approach for multidrug-resistant tumor treatments by inducing cell membrane lysis.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Carcinoma, Renal Cell/therapy , Cell Line, Tumor , Female , Humans , Kidney Neoplasms/therapy , Male , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Peptides/chemistry , Tumor Microenvironment
16.
Adv Mater ; 34(24): e2109432, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35426184

ABSTRACT

Targeted immunomodulation through biomolecule-based nanostructures, especially to dendritic cells (DCs), holds great promise for effective cancer therapy. However, construction of high-performance agonist by mimicking natural ligand to activate immune cell signaling is a great challenge so far. Here, a peptide-based nanoagonist toward CD40 (PVA-CD40) with preorganized interfacial topological structure that activates lymph node DCs efficiently and persistently, achieving amplified immune therapeutic efficacy is described. The on-site fabrication of PVA-CD40 is realized through the click conjugation of two functional peptides including the "CD40 anchoring arm" and the "assembly-driving motor." The resultant polyvalent interface rapidly triggers the receptor oligomerization and downstream signaling. Strikingly, one shot administration of PVA-CD40 elicits maturation period of DCs up to 2.3-fold comparing to that of CD40 antibody. Finally, combining the PVA-CD40 with anti-PD-1 antibody results in subsequent inhibition of tumor growth in both B16F10 and 4T1 mice tumor models with survival rate up to 37%, while none of the mice survives in the clinically relevant CD40 mAb and anti-PD-1 combination-treated group. It is envisioned that the fabrication of antibody-like superstructures in vivo provides an efficient platform for modulating the duration of immune response to achieve optimal therapeutic efficacy.


Subject(s)
Dendritic Cells , Neoplasms , Animals , CD40 Antigens , Immunotherapy/methods , Mice , Neoplasms/drug therapy , Peptides/pharmacology
17.
Natl Sci Rev ; 9(2): nwab159, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35145705

ABSTRACT

Cancer vaccines have exhibited immense potential in cancer treatment. Through activating the host's immune system, vaccines stimulate extensive functional T cells to eliminate cancer. However, the therapeutic efficacy of cancer vaccines is limited by their inferior lymph node delivery and inadequate uptake of dendritic cells. Herein, we propose an in situ phase transitional strategy on vaccine manufacturing to maximally enhance lymph node drainage while ensuring adequate dendritic cell uptake. The phase transitional vaccines, with dynamic size modulation property, retain a small size (24.4 ± 3.1 nm) during lymph node draining then transform into larger particles (483.0 ± 41.6 nm) on-site by external signal input. Results show that this strategy induced rapid and robust immune response in a mouse melanoma tumor model. Furthermore, a stronger humoral immune response was observed in mice when immunized with MHC-II restricted antigen, which demonstrated that lymph node-targeted cancer vaccine delivery could be effectively manipulated through dynamic size modulation.

18.
Angew Chem Int Ed Engl ; 61(10): e202113649, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34994999

ABSTRACT

Precise and effective manipulation of protein functions still faces tremendous challenges. Herein we report a programmable peptide molecule, consisted of targeting and self-assembly modules, that enables specific and highly efficient assembly governed by targeting receptor proteins. Upon binding to the cell membrane receptor, peptide conformation is somewhat stabilized along with decreased self-assembly activation energy, promoting peptide-protein complex oligomerization. We first design a GNNQQNY-RGD peptide (G7-RGD) to recognize integrin αV ß3 receptor for proof-of-concept study. In the presence of αV ß3 protein, the critical assembly concentration of free G7-RGD decreases from 525 to 33 µM and the resultant G7-RGD cluster drives integrin receptor oligomerization. Finally, a bispecific assembling peptide antiCD3-G7-RGD is rationally designed for cancer immunotherapy, which validates CD3 oligomerization and concomitant T cell activation, leading to T cell-mediated cancer cell cytolysis.


Subject(s)
Immunotherapy , Integrin alphaVbeta3/analysis , Neoplasms/therapy , Peptides/chemistry , Humans , Integrin alphaVbeta3/immunology , Neoplasms/immunology , Peptides/immunology
19.
Adv Healthc Mater ; 10(24): e2100333, 2021 12.
Article in English | MEDLINE | ID: mdl-33870658

ABSTRACT

Cationic therapeutic peptides have received widespread attention due to their excellent antibacterial and antitumor properties. However, most of these peptides have undesirable delivery efficiency and high hemolytic toxicity due to the positively charged α-helix structure containing many lysine and arginine, which may restrict its in vivo applications. Herein, a conformationally transformed therapeutic peptide Pep-HCO3 modified with bicarbonates on guanidine groups is designed. Such a design allows Pep-HCO3 ((nap-RAGLQFPVGRLLRRLLRRLLR) nHCO3 ) to self-assemble into nanoparticles (NP-Pep) due to disrupting helix folding and the formation of intermolecular hydrogen bonding between bicarbonates and guanidine groups. When pH is from 7.4 to 6.5 at the tumor sites, guanidine bicarbonate can be hydrolyzed to form CO2 and guanidine groups, resulting in the disassembling of the NP-Pep into monomers α-Pep with a positively charged α-helix structure. In vivo, NP-Pep not only inhibits the tumor growth of xenografted mice with a twofold enhanced inhibition rate compared with α-Pep treatment group, but also significantly reduces the hemolytic toxicity by responding to the pH of tumor microenvironment. Therefore, the strategy of conformational transition-triggered disassembly of nanoparticles allows efficient delivery of cationic therapeutic peptides and lowering the hemolytic toxicity, which may provide an avenue for developing high-performance cationic peptide in vivo applications.


Subject(s)
Nanoparticles , Neoplasms , Animals , Cations , Mice , Nanomedicine , Neoplasms/drug therapy , Peptides , Tumor Microenvironment
20.
ChemMedChem ; 16(16): 2452-2458, 2021 08 19.
Article in English | MEDLINE | ID: mdl-33882175

ABSTRACT

Self-assembly peptide materials have promoted the development of science research including life science, optics, medicine, and catalysis over the past two decades. Especially in tumor treatment, peptide self-assembly strategies have exhibited promising potential by their high degree of biocompatibility, construction modularization, and diversity in structure controllability. Driven by physical and chemical triggers, peptides can self-assemble in vivo to form fibers, spheres, hydrogels, or ribbons to achieve predeterminate biological functions. Peptide self-assembly triggered by chemical reactions provides superior specificity and intelligent responsiveness to produce assembly-induced biological effects in target regions. Herein, from the perspective of triggers of peptide assembly, we briefly review the applications of in vivo peptide self-assembly strategies for tumor treatment, including tumor-pathology-factor-induced chemical reactions and bio-orthogonal reactions.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Peptides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Neoplasms/pathology , Peptides/chemical synthesis , Peptides/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...