Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35457784

ABSTRACT

Among marine biotoxins, palytoxins (PlTXs) and cyclic imines (CIs), including spirolides, pinnatoxins, pteriatoxins, and gymnodimines, are not managed in many countries, such as the USA, European nations, and South Korea, because there are not enough poisoning cases or data for the limits on these biotoxins. In this article, we review unregulated marine biotoxins (e.g., PlTXs and CIs), their toxicity, causative phytoplankton species, and toxin extraction and detection protocols. Due to global warming, the habitat of the causative phytoplankton has expanded to the Asia-Pacific region. When ingested by humans, shellfish that accumulated toxins can cause various symptoms (muscle pain or diarrhea) and even death. There are no systematic reports on the occurrence of these toxins; however, it is important to continuously monitor causative phytoplankton and poisoning of accumulating shellfish by PlTXs and CI toxins because of the high risk of toxicity in human consumers.


Subject(s)
Foodborne Diseases , Shellfish Poisoning , Foodborne Diseases/epidemiology , Humans , Imines , Marine Toxins , Phytoplankton , Seafood , Shellfish/analysis , Shellfish Poisoning/epidemiology
2.
J Pers Med ; 11(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207451

ABSTRACT

Gastric cancer is a frequently occurring cancer and is the leading cause of cancer-related deaths. Recent studies have shown that aberrant glycosylation of serum haptoglobin is closely related to gastric cancer and has enormous potential for use in diagnosis. However, there is no platform with high reliability and high reproducibility to comprehensively analyze haptoglobin glycosylation covering microheterogeneity to macroheterogeneity for clinical applications. In this study, we developed a middle-up-down glycoproteome platform for fast and accurate monitoring of haptoglobin glycosylation. This platform utilizes an online purification of LC for sample desalting, and an in silico haptoglobin glycopeptide library constructed by combining peptides and N-glycans to readily identify glycopeptides. In addition, site-specific glycosylation with glycan heterogeneity can be obtained through only a single MS analysis. Haptoglobin glycosylation in clinical samples consisting of healthy controls (n = 47) and gastric cancer patients (n = 43) was extensively investigated using three groups of tryptic glycopeptides: GP1 (including Asn184), GP2 (including Asn207 and Asn211), and GP3 (including Asn241). A total of 23 individual glycopeptides were determined as potential biomarkers (p < 0.00001). In addition, to improve diagnostic efficacy, we derived representative group biomarkers with high AUC values (0.929 to 0.977) through logistic regression analysis for each GP group. It has been found that glycosylation of haptoglobin is highly associated with gastric cancer, especially the glycosite Asn241. Our assay not only allows to quickly and easily obtain information on glycosylation heterogeneity of a target glycoprotein but also makes it an efficient tool for biomarker discovery and clinical diagnosis.

3.
Curr Biol ; 28(14): 2348-2355.e9, 2018 07 23.
Article in English | MEDLINE | ID: mdl-30017480

ABSTRACT

The history of humankind is marked by the constant adoption of new dietary habits affecting human physiology, metabolism, and even the development of nutrition-related disorders. Despite clear archaeological evidence for the shift from hunter-gatherer lifestyle to agriculture in Neolithic Europe [1], very little information exists on the daily dietary habits of our ancestors. By undertaking a complementary -omics approach combined with microscopy, we analyzed the stomach content of the Iceman, a 5,300-year-old European glacier mummy [2, 3]. He seems to have had a remarkably high proportion of fat in his diet, supplemented with fresh or dried wild meat, cereals, and traces of toxic bracken. Our multipronged approach provides unprecedented analytical depth, deciphering the nutritional habit, meal composition, and food-processing methods of this Copper Age individual.


Subject(s)
Diet/history , Mummies , Archaeology , Austria , Dietary Fats , Edible Grain , History, Ancient , Humans , Italy , Male , Meat
4.
J Microbiol Biotechnol ; 27(7): 1345-1358, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-28478660

ABSTRACT

The impact of overproduction of a heterologous protein on the metabolic system of host Lactococcus lactis was investigated. The protein expression profiles of L. lactis IL1403 containing two near-identical plasmids that expressed high- and low-level of the green fluorescent protein (GFP) were examined via shotgun proteomics. Analysis of the two strains via high-throughput LC-MS/MS proteomics identified the expression of 294 proteins. The relative amount of each protein in the proteome of both strains was determined by label-free quantification using the spectral counting method. Although expression level of most proteins were similar, several significant alterations in metabolic network were identified in the high GFP-producing strain. These changes include alterations in the pyruvate fermentation pathway, oxidative pentose phosphate pathway, and de novo synthesis pathway for pyrimidine RNA. Expression of enzymes for the synthesis of dTDP-rhamnose and N-acetylglucosamine from glucose was suppressed in the high GFP strain. In addition, enzymes involved in the amino acid synthesis or interconversion pathway were downregulated. The most noticeable changes in the high GFP-producing strain were a 3.4-fold increase in the expression of stress response and chaperone proteins and increase of caseinolytic peptidase family proteins. Characterization of these host expression changes witnessed during overexpression of GFP was might suggested the metabolic requirements and networks that may limit protein expression, and will aid in the future development of lactococcal hosts to produce more heterologous protein.


Subject(s)
Bacterial Proteins/genetics , Gene Expression , Green Fluorescent Proteins/genetics , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Recombinant Proteins/biosynthesis , Bacterial Proteins/metabolism , Chromatography, Liquid , Endopeptidase Clp/genetics , Green Fluorescent Proteins/biosynthesis , Metabolic Networks and Pathways/genetics , Proteome , Proteomics/methods , Systems Biology , Tandem Mass Spectrometry
5.
Dis Markers ; 2014: 634289, 2014.
Article in English | MEDLINE | ID: mdl-24648610

ABSTRACT

Changes of glycosylation pattern in serum proteins have been linked to various diseases including cancer, suggesting possible development of novel biomarkers based on the glycomic analysis. In this study, N-linked glycans from human serum were quantitatively profiled by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and compared between healthy controls and ovarian cancer patients. A training set consisting of 40 healthy controls and 40 ovarian cancer cases demonstrated an inverse correlation between P value of ANOVA and area under the curve (AUC) of each candidate biomarker peak from MALDI-TOF MS, providing standards for the classification. A multibiomarker panel composed of 15 MALDI-TOF MS peaks resulted in AUC of 0.89, 80~90% sensitivity, and 70~83% specificity in the training set. The performance of the biomarker panel was validated in a separate blind test set composed of 23 healthy controls and 37 ovarian cancer patients, leading to 81~84% sensitivity and 83% specificity with cut-off values determined by the training set. Sensitivity of CA-125, the most widely used ovarian cancer marker, was 74% in the training set and 78% in the test set, respectively. These results indicate that MALDI-TOF MS-mediated serum N-glycan analysis could provide critical information for the screening of ovarian cancer.


Subject(s)
CA-125 Antigen/blood , Neoplasms, Cystic, Mucinous, and Serous/diagnosis , Ovarian Neoplasms/diagnosis , Adult , Area Under Curve , Case-Control Studies , Early Detection of Cancer , Female , Humans , Mass Screening , Middle Aged , Neoplasms, Cystic, Mucinous, and Serous/blood , Ovarian Neoplasms/blood , Polysaccharides/blood , ROC Curve , Single-Blind Method , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Young Adult
6.
Mol Cell Proteomics ; 13(1): 30-48, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24085812

ABSTRACT

Small cell lung cancer (SCLC) is an aggressive type of lung cancer, and the detection of SCLCs at an early stage is necessary for successful therapy and for improving cancer survival rates. Fucosylation is one of the most common glycosylation-based modifications. Increased levels of fucosylation have been reported in a number of pathological conditions, including cancers. In this study, we aimed to identify and validate the aberrant and selective fucosylated glycoproteins in the sera of patients with SCLC. Fucosylated glycoproteins were enriched by the Aleuria aurantia lectin column after serum albumin and IgG depletion. In a narrowed down and comparative data analysis of both label-free proteomics and isobaric peptide-tagging chemistry iTRAQ approaches, the fucosylated glycoproteins were identified as up- or down-regulated in the sera of limited disease and extensive disease stage patients with SCLC. Verification was performed by multiple reaction monitoring-mass spectrometry to select reliable markers. Four fucosylated proteins, APCS, C9, SERPINA4, and PON1, were selected and subsequently validated by hybrid A. aurantia lectin ELISA (HLE) and Western blotting. Compared with Western blotting, the HLE analysis of these four proteins produced more optimal diagnostic values for SCLC. The PON1 protein levels were significantly reduced in the sera of patients with SCLC, whereas the fucosylation levels of PON1 were significantly increased. Fucosylated PON1 exhibited an area under curve of 0.91 for the extensive disease stage by HLE, whereas the PON1 protein levels produced an area under curve of 0.82 by Western blot. The glycan structural analysis of PON1 by MS/MS identified a biantennary fucosylated glycan modification consisting of a core + 2HexNAc + 1Fuc at increased levels in the sera of patients with SCLC. In addition, the PON1 levels were decreased in the sera of the Lewis lung carcinoma lung cancer mouse model that we examined. Our data suggest that fucosylated protein biomarkers, such as PON1, and their fucosylation levels and patterns can serve as diagnostic and prognostic serological markers for SCLC.


Subject(s)
Aryldialkylphosphatase/blood , Glycoproteins/blood , Proteomics , Small Cell Lung Carcinoma/genetics , Adult , Aged , Aryldialkylphosphatase/biosynthesis , Biomarkers, Tumor/blood , Female , Gene Expression Regulation, Neoplastic , Glycosylation , Humans , Lectins/metabolism , Male , Middle Aged , Small Cell Lung Carcinoma/blood , Small Cell Lung Carcinoma/pathology , Tandem Mass Spectrometry
7.
Biochemistry ; 45(18): 5878-84, 2006 May 09.
Article in English | MEDLINE | ID: mdl-16669630

ABSTRACT

Aspartoacylase catalyzes the deacetylation of N-acetylaspartic acid (NAA) to produce acetate and L-aspartate and is the only brain enzyme that has been shown to effectively metabolize NAA. Although the exact role of this enzymatic reaction has not yet been completely elucidated, the metabolism of NAA appears to be necessary in the formation of myelin lipids, and defects in this enzyme lead to Canavan disease, a fatal neurological disorder. The low catalytic activity and inherent instability observed with the Escherichia coli-expressed form of aspartoacylase suggested the need for a suitable eukaryotic expression system that would be capable of producing a fully functional, mature enzyme. Human aspartoacylase has now been successfully expressed in Pichia pastoris. While the expression yields are lower than in E. coli, the purified enzyme is significantly more stable. This enzyme form has the same substrate specificity but is 150-fold more active than the E. coli-expressed enzyme. The molecular weight of the purified enzyme, measured by mass spectrometry, is higher than predicted, suggesting the presence of some post-translational modifications. Deglycosylation of aspartoacylase or mutation at the glycosylation site causes decreased enzyme stability and diminished catalytic activity. A carbohydrate component has been removed and characterized by mass spectrometry. In addition to this carbohydrate moiety, the enzyme has also been shown to contain one zinc atom per subunit. Chelation studies to remove the zinc result in a reversible loss of catalytic activity, thus establishing aspartoacylase as a zinc metalloenzyme.


Subject(s)
Amidohydrolases/metabolism , Canavan Disease/enzymology , Amidohydrolases/genetics , Cloning, Molecular , Enzyme Stability , Glycosylation , Humans , Pichia/genetics , Polymerase Chain Reaction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
Electrophoresis ; 26(19): 3641-9, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16196105

ABSTRACT

The nanoLC separations of oligosaccharides using microchip-based columns are described. Mixtures of alditols from mucins and human milk are separated on graphitized carbon. The nanoLC-MS device showed high mass accuracy for the oligosaccharides ranging between 1 and 6 ppm on routine analyses. The high mass accuracy readily allowed identification of oligosaccharide peaks and the determination of their compositions. High retention time reproducibility was exhibited by the microchip LC. Little variation was observed for standard sample either alone or in a complex heterogeneous mixture. The nanoLC-MS exhibits excellent capabilities in profiling mixtures of oligosaccharides.


Subject(s)
Chromatography, Liquid/instrumentation , Mass Spectrometry , Microfluidic Analytical Techniques/instrumentation , Nanotechnology/instrumentation , Oligosaccharides/analysis , Carbon/chemistry , Humans , Milk, Human/chemistry , Mucins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...