Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(40): 46849-46860, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37773933

ABSTRACT

A crystalline silicon (c-Si) solar cell with a polycrystalline silicon/SiOx (poly-Si/SiOx) structure, incorporating both electron and hole contacts, is an attractive choice for achieving ideal carrier selectivity and serving as a fundamental component in high-efficiency perovskite/Si tandem and interdigitated back-contact solar cells. However, our understanding of the carrier transport mechanism of hole contacts remains limited owing to insufficient studies dedicated to its investigation. There is also a lack of comparative studies on the poly-Si/SiOx electron and hole contacts for ideal carrier-selective solar cells. Therefore, this study aims to address these knowledge gaps by exploring the relationship among microstructural evolution, dopant in-diffusion, and the resulting carrier transport mechanism in both the electron and hole contacts of poly-Si/SiOx solar cells. Electron (n+ poly-Si/SiOx/substrate)- and hole (p+ poly-Si/SiOx/substrate)-selective passivating contacts are subjected to thermal annealing. Changes in the passivation properties and carrier transport mechanisms of these contacts are investigated during thermal annealing at various temperatures. Notably, the results demonstrate that the passivation properties and carrier transport mechanisms are strongly influenced by the microstructural evolution of the poly-Si/SiOx layer stack and dopant in-diffusion. Furthermore, electron and hole contacts exhibit common behaviors regarding microstructural evolution and dopant in-diffusion. However, the hole contacts exhibit relatively inferior electrical properties overall, mainly because both the SiOx interface and the p+ poly-Si are found to be highly defective. Moreover, boron in the hole contacts diffuses deeper than phosphorus in the electron contacts, resulting in deteriorated carrier collection. The experimental results are also supported by device simulation. Based on these findings, design rules are suggested for both electron and hole contacts, such as using thicker SiOx and/or annealing the solar cell at a temperature not exceeding the critical annealing temperature of the hole contacts.

2.
Adv Mater ; 33(41): e2103708, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34476855

ABSTRACT

The fabrication of ultrathin silicon wafers at low cost is crucial for advancing silicon electronics toward stretchability and flexibility. However, conventional fabrication techniques are inefficient because they sacrifice a large amount of substrate material. Thus, advanced silicon electronics that have been realized in laboratories cannot move forward to commercialization. Here, a fully bottom-up technique for producing a self-releasing ultrathin silicon wafer without sacrificing any of the substrate is presented. The key to this approach is a self-organized nanogap on the substrate fabricated by plasma-assisted epitaxial growth (plasma-epi) and subsequent hydrogen annealing. The wafer thickness can be independently controlled during the bulk growth after the formation of plasma-epi seed layer. In addition, semiconductor devices are realized using the ultrathin silicon wafer. Given the high scalability of plasma-epi and its compatibility with conventional semiconductor process, the proposed bottom-up wafer fabrication process will open a new route to developing advanced silicon electronics.

3.
Mikrochim Acta ; 186(8): 539, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31317334

ABSTRACT

Ruthenium-quercetin conjugated nanoclusters (Ru-QC NCs) were synthesized via a one-pot reflux reaction. As inhalation of heavy metal ions like cobalt can lead to lung cancer, a fluorescent probe was designed for the determination of Co(II) both in aqueous solutions and living cells. The probe consists of hybrid nanoclusters with an average size of 2 nm that were prepared from ruthenium(II) ions and the flavonoid quercetin. These are termed as Ru-QC NCs. They display strong orange-colored emission with a peak at 558 nm under 465-nm excitation. The Ru-QC NCs are cell viable and enable imaging of cells and intracellular fluorometric detection of Co(II). The anticancer properties of Ru-QC NCs were screened by using non-small cell lung cancer (A549) and human dermal fibroblast (HDFa) cell lines. The Ru-QC NCs exert considerable cytotoxicity in A549 cells (at levels of 20-50 µg·mL-1), whereas no significant cytotoxicity was observed in case of HDFa cells. The anticancer properties of Ru-QC NCs were screened via MTT assay, live-dead staining, and ROS assay, respectively. Morphological changes of cancer cells were observed using atomic force microscopy. The fluorescent probe can detect Co(II) with a detection limit of 9.28 nM and with a linear response in the 0.03-100 µM concentration range. Graphical abstract Schematic representation of ruthenium-quercetin nanoclusters with potential anticancer properties. They are promising fluorescent probes for intracellular sensing of cobalt (Co2+) and bio-imaging. They exhibited efficient fluorometric detection of Co2+ with the limit of detection (LOD) of 9.28 nM.


Subject(s)
Antineoplastic Agents , Cobalt/analysis , Fluorescent Dyes , Nanostructures/chemistry , Quercetin , Ruthenium , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cobalt/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Fluorometry , Humans , Quercetin/chemistry , Quercetin/pharmacology , Reactive Oxygen Species/metabolism , Ruthenium/chemistry , Ruthenium/pharmacology
4.
Oncotarget ; 8(29): 47861-47875, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28599308

ABSTRACT

The aim of this study was to analyze photo-dynamic and photo-pathology changes of different color light radiations on human adult skin cells. We used a real-time biophysical and biomechanics monitoring system for light-induced cellular changes in an in vitro model to find mechanisms of the initial and continuous degenerative process. Cells were exposed to intermittent, mild and intense (1-180 min) light with On/Off cycles, using blue, green, red and white light. Cellular ultra-structural changes, damages, and ECM impair function were evaluated by up/down-regulation of biophysical, biomechanical and biochemical properties. All cells exposed to different color light radiation showed significant changes in a time-dependent manner. Particularly, cell growth, stiffness, roughness, cytoskeletal integrity and ECM proteins of the human dermal fibroblasts-adult (HDF-a) cells showed highest alteration, followed by human epidermal keratinocytes-adult (HEK-a) cells and human epidermal melanocytes-adult (HEM-a) cells. Such changes might impede the normal cellular functions. Overall, the obtained results identify a new insight that may contribute to premature aging, and causes it to look aged in younger people. Moreover, these results advance our understanding of the different color light-induced degenerative process and help the development of new therapeutic strategies.


Subject(s)
Biophysics/methods , Light , Skin/cytology , Skin/radiation effects , Cell Line , Electric Impedance , Extracellular Matrix/metabolism , Extracellular Matrix/radiation effects , Flow Cytometry , Humans , Light/adverse effects , Microscopy, Atomic Force , Risk Assessment , Skin Physiological Phenomena/radiation effects
5.
J Microbiol Methods ; 133: 1-7, 2017 02.
Article in English | MEDLINE | ID: mdl-27965010

ABSTRACT

Loop-mediated isothermal amplification (LAMP) is considered as one of the alternatives to the conventional PCR and it is an inexpensive portable diagnostic system with minimal power consumption. The present work describes the application of LAMP in real-time photon detection and quantitative analysis of nucleic acids integrated with a disposable complementary-metal-oxide semiconductor (CMOS) image sensor. This novel system works as an amplification-coupled detection platform, relying on a CMOS image sensor, with the aid of a computerized circuitry controller for the temperature and light sources. The CMOS image sensor captures the light which is passing through the sensor surface and converts into digital units using an analog-to-digital converter (ADC). This new system monitors the real-time photon variation, caused by the color changes during amplification. Escherichia coli O157 was used as a proof-of-concept target for quantitative analysis, and compared with the results for Staphylococcus aureus and Salmonella enterica to confirm the efficiency of the system. The system detected various DNA concentrations of E. coli O157 in a short time (45min), with a detection limit of 10fg/µL. The low-cost, simple, and compact design, with low power consumption, represents a significant advance in the development of a portable, sensitive, user-friendly, real-time, and quantitative analytic tools for point-of-care diagnosis.


Subject(s)
DNA, Bacterial/isolation & purification , Food Contamination/analysis , Nucleic Acid Amplification Techniques , Semiconductors , Cost-Benefit Analysis , Equipment Design , Escherichia coli O157/isolation & purification , Food Microbiology , Limit of Detection , Salmonella enterica/isolation & purification , Sensitivity and Specificity , Staphylococcus aureus/isolation & purification
6.
Mater Sci Eng C Mater Biol Appl ; 72: 583-589, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28024625

ABSTRACT

A real-time colorimetric sensor array (CSA) offers the advantages of diversity and accuracy for the quantification of multiple analytes; however, traditional sensors require a complex fabrication process. Therefore, to take full advantage of this sensing platform, we have developed a simple CSA system composed of a polymer, a reducing agent, and different pH indicators. Distinctive color response patterns were classified by extracting the hidden information, (i.e., red, green, and blue (RGB) values) from the indicators. This triple-channel sensing platform is further applied for statistical analysis, to quantify different concentrations of ammonia and other analytes. The sensor array showed a limit of detection of 0.3ppm, which is well below the diagnostic criteria for ammonia concentration in the breath of healthy individuals and of patients with end-stage renal disease. As this sensor would be able to quantify gaseous ammonia in the breath, it is relevant to the point-of-care diagnosis of patients with renal diseases.


Subject(s)
Ammonia/analysis , Colorimetry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Cluster Analysis , Gases/chemistry , Limit of Detection , Principal Component Analysis
7.
J Korean Med Sci ; 20(2): 297-301, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15832004

ABSTRACT

The authors developed a biodegradable polymer that releases an antibiotic (nalidixic acid) slowly and continuously, for prevention of catheter-induced infection during drainage of cerebrospinal fluid. We investigated the in vitro antibiotic releasing characteristics and bacterial killing effects of the new polymer against E. coli. The novel fluoroquinolone polymer was prepared using diisopropylcarbodiimide, poly (e-capro-lactone) diol, and nalidixic acid. FT-IR, mass spectrometry, and elemental analysis proved that the novel antibacterial polymer was prepared successfully without any side products. Negative MS showed that the released drug has a similar molecular weight (M.W.=232, 350) to pure drug (M.W.=232). In high pressure liquid chromatography, the released drug and drug-oligomer showed similar retention times (about 4.5-5 min) in comparison to pure drug (4.5 min). The released nalidixic acid and nalidixic acid derivatives have antibacterial characteristics against E. Coli, Staphylococcus aureus, and Salmonella typhi, of more than 3 months duration. This study suggests the possibility of applying this new polymer to manufacture drainage catheters that resist catheter-induced infection, by delivering antibiotics for a longer period of more than 1 month.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Catheterization/adverse effects , Cerebrospinal Fluid/physiology , Drainage/adverse effects , Drug Delivery Systems , Nalidixic Acid/administration & dosage , Biodegradation, Environmental , Biofilms , Chromatography, High Pressure Liquid , Humans , Mass Spectrometry , Polymers/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...