Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(23): 16218-16227, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38769972

ABSTRACT

In this study, 24 novel ferulic acid derivatives containing 1,3,4-oxadiazole thioether and trifluoromethyl pyrimidine were designed and synthesized. Bioactivity assay showed that some of the target compounds exhibited moderate to good antifungal activity against Botryosphaeria dothidea BD), Phomopsis sp. (PS), Botrytis cinerea (BC), Fusarium spp. (FS), Fusarium graminearum (FG), and Colletotrichum sp. (CS). Especially, compound 6f demonstrated superior antifungal activity against Phomopsis sp., with an EC50 value of 12.64 µg mL-1, outperforming pyrimethanil (35.16 µg mL-1) and hymexazol (27.01 µg mL-1). Meanwhile, compound 6p showed strong antibacterial activity against X. axonopodis pv. citri (XAC) in vitro, with an inhibition ratio of 85.76%, which was higher than thiodiazole copper's 76.59% at 100 µg mL-1. Furthermore, molecular docking simulations elucidated that compound 6f engaged in hydrogen bonding with the succinate dehydrogenase (SDH) enzyme at SER-17, SER-39, ARG-14 and ARG-43 sites, clarifying its mode of action. This study highlights the potential of these novel ferulic acid derivatives as promising agents for controlling fungal and bacterial threats to plant health. To the best of our knowledge, this study represents the first report on the antifungal and antibacterial properties of ferulic acid derivatives containing 1,3,4-oxadiazole thioether and trifluoromethyl pyrimidine skeleton.

2.
ACS Omega ; 9(1): 1424-1435, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222640

ABSTRACT

In recent years, the severity of plant diseases caused by plant pathogenic fungi and viruses has been on the rise. However, there is a limited availability of pesticide chemicals in the market for effectively controlling both fungal and viral infections. To solve this problem, a series of novel pyrimidine derivatives containing a 1,3,4-oxadiazole thioether fragment were synthesized. Among them, compound 6s exhibited remarkable in vivo protection activity against tobacco mosaic virus, demonstrating the superior 50% effective concentration (EC50) value of 0.42 µM, outperforming ningnanmycin (0.60 µM). Meanwhile, compound 6s exhibited remarkable antifungal activity against Botrytis cinerea Pers. in postharvest blueberry in vitro, with an EC50 value of 0.011 µM, surpassing the inhibition rate of Pyrimethanil (0.262 µM). Additionally, compound 6s also demonstrated remarkable curative and protection activities against blueberry fruit gray mold in vivo, with control efficiencies of 54.2 and 60.4% at 200 µg/mL concentration, respectively, which were comparable to those of Pyrimethanil (49.3 and 63.9%, respectively). Scanning electron microscopy showed that the compound 6s-treated hyphae of B. cinerea Pers. in postharvest blueberry became abnormally collapsed and shriveled. Furthermore, the molecular docking simulation demonstrated that compound 6s formed hydrogen bonds with SER-17, ARG-43, and SER-39 of succinate dehydrogenase (SDH), providing a possible explanation for the mechanism of action between the target compounds and SDH. This study represents the first report on the antiviral and antifungal activities of novel pyrimidine derivatives containing a 1,3,4-oxadiazole thioether fragment.

3.
Molecules ; 28(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37764273

ABSTRACT

To explore more efficient and less toxic antibacterial and antifungal pesticides, we utilized 2,6-difluorobenzamide as a starting material and ultimately synthesized 23 novel benzoylurea derivatives containing a pyrimidine moiety. Their structures were characterized and confirmed by 1H NMR, 13C NMR, 19F NMR, and HRMS. The bioassay results demonstrated that some of the title compounds exhibited moderate to good in vitro antifungal activities against Botrytis cinerea in cucumber, Botrytis cinerea in tobacco, Botrytis cinerea in blueberry, Phomopsis sp., and Rhizoctonia solani. Notably, compounds 4j and 4l displayed EC50 values of 6.72 and 5.21 µg/mL against Rhizoctonia solani, respectively, which were comparable to that of hymexazol (6.11 µg/mL). Meanwhile, at 200 and 100 concentrations, the target compounds 4a-4w exhibited lower in vitro antibacterial activities against Xanthomonas oryzae pv. oryzicola and Xanthomonas citri subsp. citri, respectively, compared to those of thiodiazole copper. Furthermore, the molecular docking simulation demonstrated that compound 4l formed hydrogen bonds with SER-17 and SER-39 of succinate dehydrogenase (SDH), providing a possible explanation for the mechanism of action between the target compounds and SDH. This study represents the first report on the antifungal and antibacterial activities of novel benzoylurea derivatives containing a pyrimidine moiety.


Subject(s)
Antifungal Agents , Fungicides, Industrial , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...