Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(22): 15542-15553, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38741956

ABSTRACT

Calcium homeostasis imbalance in the body can lead to a variety of chronic diseases. Supplement efficiency is essential. Peptide calcium chelate, a fourth-generation calcium supplement, offers easy absorption and minimal side effects. Its effectiveness relies on peptide's calcium binding capacity. However, research on amino acid sequences in peptides with high calcium binding capacity (HCBC) is limited, affecting the efficient identification of such peptides. This study used soybean peptides (SP), separated and purified by gel chromatography, to obtain HCBC peptide (137.45 µg mg-1) and normal peptide (≤95.78 µg mg-1). Mass spectrometry identified the sequences of these peptides, and an analysis of the positional distribution of characteristic amino acids followed. Two HCBC peptides with sequences GGDLVS (271.55 µg mg-1) and YEGVIL (272.54 µg mg-1) were discovered. Molecular dynamics showed that when either aspartic acid is located near the N-terminal's middle, or glutamic acid is near the end, or in cases of continuous Asp or Glu, the binding speed, probability, and strength between the peptide and calcium ions are superior compared to those at other locations. The study's goal was to clarify how the positions of characteristic amino acids in peptides affect calcium binding, aiding in developing peptide calcium chelates as a novel calcium supplement.

2.
Molecules ; 29(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38257308

ABSTRACT

α-Amylase inhibitory peptides are used to treat diabetes, but few studies have statistically characterized their interaction with α-amylase. This study performed the molecular docking of α-amylase with inhibitory peptides from published papers. The key sites, side chain chargeability, and hydrogen bond distribution characteristics were analyzed. Molecular dynamics simulated the role of key sites in complex stability. Moreover, partial least squares regression (PLSR) was used to analyze the contribution of different amino acids in the peptides to inhibition. The results showed that, for the α-amylase molecule, His201 and Gln63, with the highest interaction numbers (INs, 15, 15) and hydrogen bond values (HBVs, 11.50, 10.33), are the key sites on α-amylase, and amino acids with positively charged side chains were important for inhibitory activity. For the inhibitory peptides, Asp and Arg had the highest HBVs, and amino acids with charged side chains were more likely to form hydrogen bonds and exert inhibitory activity. In molecular dynamics simulations, peptides involving key binding sites formed more stable complexes with α-amylase than α-amylase alone, suggesting enhanced inhibitory effects. Further, PLSR results showed that amino acids close to the N-terminus of the inhibitory peptide, located in the third and fifth positions, were significantly correlated with its inhibitory activity. In conclusion, this study provides a new approach to developing and screening α-amylase inhibitors.


Subject(s)
Antifibrinolytic Agents , alpha-Amylases , Molecular Docking Simulation , Least-Squares Analysis , Molecular Dynamics Simulation , Amino Acids , Peptides
3.
Foods ; 11(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36140890

ABSTRACT

Calcium is one of the most important mineral elements in the human body and is closely related to the maintenance of human health. To prevent calcium deficiency, various calcium supplements have been developed, but their application tends to be limited by low calcium content and highly irritating effects on the stomach, among other side effects. Recently, calcium-peptide chelates, which have excellent stability and are easily absorbed, have received attention as an alternative emerging calcium supplement. Calcium-binding peptides (CaBP) are usually obtained via the hydrolysis of animal or plant proteins, and calcium-binding capacity (CaBC) can be further improved through chromatographic purification techniques. In calcium ions, the phosphate group, carboxylic group and nitrogen atom in the peptide are the main binding sites, and the four modes of combination are the unidentate mode, bidentate mode, bridging mode and α mode. The stability and safety of calcium-peptide chelates are discussed in this paper, the intestinal absorption pathways of calcium elements and peptides are described, and the bioavailability of calcium-peptide chelates, both in vitro and in vivo, is also introduced. This review of the research status of calcium-peptide chelates aims to provide a reasonable theoretical basis for their application as calcium supplementation products.

4.
Foods ; 11(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35954128

ABSTRACT

Inflammation is considered to be a crucial factor in the development of chronic diseases, eight of which were listed among the top ten causes of death worldwide in the World Health Organization's World Health Statistics 2019. Moreover, traditional drugs for inflammation are often linked to undesirable side effects. As gentler alternatives to traditional anti-inflammatory drugs, plant-derived bioactive peptides have been shown to be effective interventions against various chronic diseases, including Alzheimer's disease, cardiovascular disease and cancer. However, an adequate and systematic review of the structures and anti-inflammatory activities of plant-derived bioactive peptides has been lacking. This paper reviews the latest research on plant-derived anti-inflammatory peptides (PAPs), mainly including the specific regulatory mechanisms of PAPs; the structure-activity relationships of PAPs; and their enzymatic processing based on the structure-activity relationships. Moreover, current research problems for PAPs are discussed, such as the shallow exploration of mechanisms, enzymatic solution determination difficulty, low yield and unknown in vivo absorption and metabolism and proposed future research directions. This work aims to provide a reference for functional activity research, nutritional food development and the clinical applications of PAPs.

SELECTION OF CITATIONS
SEARCH DETAIL
...