Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 70(4): 1203-1211, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-34994555

ABSTRACT

Enantiomerically pure d-amino acids are important intermediates as chiral building blocks for peptidomimetics and semisynthetic antibiotics. Here, a transcriptional factor-based screening strategy was used for the rapid screening of d-stereospecific amino acid amidase via an enzyme-specific amidophenol substrate. We used a d-threonine amidophenyl derivative to produce 2-aminophenol that serves as a putative enzyme indicator in the presence of d-threonine amidases. Comparative analyses of known bacterial species indicated that several Bacillus strains produce amidase and form putative indicators in culture media. The estimated amidase was cloned and subjected to rapid directed evolution through biosensor cells. Consequently, we characterized the F119A mutation that significantly improved the catalytic activity toward d-alanine, d-threonine, and d-glutamate. Its beneficial effects were confirmed by higher conversions and recurrent applications of the mutant enzyme, compared to the wild-type. This study showed that rapid directed evolution with biosensors coupled to designed substrates is useful to develop biocatalytic processes.


Subject(s)
Bacillus , Biosensing Techniques , Amidohydrolases/genetics , Amidohydrolases/metabolism , Amino Acids , Bacillus/genetics , Bacillus/metabolism , Mutation , Substrate Specificity
2.
Article in English | MEDLINE | ID: mdl-34902567

ABSTRACT

Lipoxygenases (LOXs) biosynthesize lipid mediators (LMs) as human signaling molecules. Among LMs, specialized pro-resolving mediators (SPMs) are involved in the resolution of inflammation and infection in humans. Here, the putative LOX from the bacterium Sphingopyxis macrogoltabida was identified as arachidonate 9S-LOX. The enzyme catalyzed oxygenation at the n-12 position of C20 and C22 polyunsaturated fatty acids (PUFAs) to form 9S- and 11S-hydroperoxy fatty acids, which were reduced to 9S- and 11S-hydroxy fatty acids (HFAs) by cysteine, respectively, and it catalyzed again oxygenation at the n-6 position of HFAs to form 9S,15S- and 11S,17S-DiHFAs, respectively. The regioselective residues of 9S-LOX were determined as lle395 and Val569 based on the amino acid alignment and homology models. The regioselectivity of the I395F variant was changed from the n-12 position on C20 PUFA to the n-6 position to form 15S-HFAs. This may be due to the reduction of the substrate-binding pocket by replacing the smaller Ile with a larger Phe. The V569W variant had a significantly lower second­oxygenating activity compared to wild-type 9S-LOX because the insertion of the hydroxyl group of the first­oxygenating products at the active site was seemed to be hindered by substituting a larger Trp for a smaller Val. The compounds, 11S-hydroxydocosapentaenoic acid, 9S,15S-dihydroxyeicosatetraenoic acid, 9S,15S-dihydroxyeicosapentaenoic acid, 11S,17S-hydroxydocosapentaenoic acid, and 11S,17S-dihydroxydocosahexaenoic acid, were newly identified by polarimeter, LC-MS/MS, and NMR. 11S,17S-DiHFAs as SPM isomers biosynthesized from C22 PUFAs showed anti-inflammatory activities in mouse and human cells. Our study contributes may stimulate physiological studies by providing new LMs.


Subject(s)
Arachidonate Lipoxygenases
3.
Prog Lipid Res ; 83: 101110, 2021 07.
Article in English | MEDLINE | ID: mdl-34144023

ABSTRACT

Oxylipins derived mainly from C20- and C22-polyunsaturated fatty acids (PUFAs), termed lipid mediators (LMs), are essential signalling messengers involved in human physiological responses associated with homeostasis and healing process for infection and inflammation. Some LMs involved in the resolution of inflammation and infection are termed specialized pro-resolving mediators (SPMs), which are generated by human M2 macrophages or polymorphonuclear leukocytes and have the potential to protect and treat hosts from bacterial and viral infections by phagocytosis activation. Lipoxygenases (LOXs) biosynthesize regio- and stereoselective LMs. Thus, understanding the regio- and stereoselectivities of LOXs for PUFAs at a molecular level is important for the biocatalytic synthesis of diverse LMs. Here, we elucidate the catalytic mechanisms and discuss regio- and stereoselectivities and their changes of LOXs determined by insertion direction and position of the substrate and oxygen at a molecular level for the biosynthesis of diverse human LMs. Recently, the biocatalytic synthesis of PUFAs to human LMs or analogues has been conducted using microbial LOXs. Such microbial LOXs involved in the biosynthesis of LMs are expected to exert significantly higher activity and stability than human LOXs. Diverse regio- and stereoselective LOXs can be obtained from microorganisms, which represent a wealth of genomic sources. We reconstruct the biosynthetic pathways of LOX-catalyzed LMs in humans and other organisms. Furthermore, we suggest the effective methods of biocatalytic synthesis of diverse human LMs from PUFAs or glucose by using microbial LOXs, increasing the stability and activity of LOXs, combining the reactions of LOXs, and constructing metabolic pathways.


Subject(s)
Fatty Acids, Unsaturated , Lipoxygenases , Biocatalysis , Humans , Lipoxygenases/metabolism
4.
J Agric Food Chem ; 67(11): 3209-3219, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30808175

ABSTRACT

Plant oxylipins, including hydroxy fatty acids, epoxy hydroxy fatty acids, and trihydroxy fatty acids, which are biosynthesized from C18 polyunsaturated fatty acids (PUFAs), are involved in pathogen-specific defense mechanisms against fungal infections. However, their quantitative biotransformation by plant enzymes has not been reported. A few bacteria produce C18 trihydroxy fatty acids, but the enzymes and pathways related to the biosynthesis of plant oxylipins in bacteria have not been reported. In this study, we first report the biotransformation of C18 PUFAs into plant C18 oxylipins by expressing linoleate 9 S-lipoxygenase with and without epoxide hydrolase from the proteobacterium Myxococcus xanthus in recombinant Escherichia coli. Among the nine types of plant oxylipins, 12,13-epoxy-14-hydroxy- cis, cis-9,15-octadecadienoic acid was identified as a new compound by NMR analysis, and 9,10,11-hydroxy- cis, cis-6,12-octadecadienoic acid and 12,13,14-trihydroxy- cis, cis-9,15-octadecadienoic were suggested as new compounds by LC-MS/MS analysis. This study shows that bioactive plant oxylipins can be produced by microbial enzymes.


Subject(s)
Bacterial Proteins/chemistry , Fatty Acids, Unsaturated/chemistry , Lipoxygenase/chemistry , Oxylipins/chemistry , Bacterial Proteins/metabolism , Biocatalysis , Fatty Acids, Unsaturated/metabolism , Lipoxygenase/metabolism , Molecular Structure , Myxococcus xanthus/enzymology , Oxylipins/metabolism , Tandem Mass Spectrometry
5.
J Lipid Res ; 59(11): 2153-2163, 2018 11.
Article in English | MEDLINE | ID: mdl-30257932

ABSTRACT

Lipoxygenases (LOXs) catalyze the dioxygenation of PUFAs to produce regio- and stereospecific oxygenated fatty acids. The identification of regio- and stereospecific LOXs is important because their specific products are involved in different physiological activities in various organisms. Bacterial LOXs are found only in some proteobacteria and cyanobacteria, and they are not stable in vitro. Here, we used C20 and C22 PUFAs such as arachidonic acid (ARA), eicosapentaenoic acid, and docosahexaenoic acid to identify an 11S-specific LOX from the proteobacterium Myxococcus xanthus and explore its in vitro stability and activity. The activity and stability of M. xanthus ARA 11S-LOX as well as the production of 11S-hydroxyeicosatetraenoic acid from ARA were significantly increased by the addition of phosphatidylcholine, Ca2+, and coactosin-like protein (newly identified in the yeast Rhodosporidium toluroides) as stimulatory factors; in fact, LOX activity in the presence of all three factors increased approximately 3-fold. Our results indicate that these stimulatory factors can be used to increase the activity and stability of bacterial LOX and the production of bioactive hydroxy fatty acids, which can contribute to new academic research.


Subject(s)
Arachidonate Lipoxygenases/metabolism , Myxococcus xanthus/enzymology , Arachidonate Lipoxygenases/genetics , Kinetics , Mutagenesis, Site-Directed , Phosphatidylcholines/metabolism , Phylogeny
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(8): 823-833, 2018 08.
Article in English | MEDLINE | ID: mdl-29684557

ABSTRACT

Lipoxygenase (LOX) is the key enzyme involved in the synthesis of oxylipins as signaling compounds that are important for cell growth and development, inflammation, and pathogenesis in various organisms. The regiospecificity of LOX from Myxococcus xanthus, a gram-negative bacterium, was investigated. The enzyme catalyzed oxygenation at the n-9 position in C20 and C22 polyunsaturated fatty acids (PUFAs) to form 12S- and 14S-hydroxy fatty acids (HFAs), respectively, and oxygenation at the n-6 position in C18 PUFAs to form 13-HFAs. The 12S-form products of C20 and C22 PUFAs by M. xanthus LOX is the first report of bacterial LOXs. The residues involved in regiospecificity were determined to be Thr397, Ala461, and Ile664 by analyzing amino acid alignment and a homology model based on human arachidonate 15-LOX with a sequence identity of 25%. Among these variants, the regiospecificity of the T397Y variant for C20 and C22 PUFAs was changed. This may be because of the reduced size of the substrate-binding pocket by substitution of the smaller Thr to the larger Tyr residue. The T397Y variant catalyzed oxygenation at the n-6 position in C20 and C22 PUFAs to form 15- and 17-hydroperoxy fatty acids, respectively. However, the oxygenation position of T397Y for C18 PUFAs was not changed. The discovery of bacterial LOX with novel regiospecificity will facilitate the biosynthesis of regiospecific­oxygenated signaling compounds.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Lipoxygenase/metabolism , Myxococcus xanthus/enzymology , Amino Acid Sequence/genetics , Arachidonate 15-Lipoxygenase/chemistry , Lipoxygenase/chemistry , Lipoxygenase/genetics , Sequence Homology, Amino Acid , Substrate Specificity/genetics , Threonine/chemistry , Threonine/genetics , Threonine/metabolism , Tyrosine/chemistry , Tyrosine/genetics , Tyrosine/metabolism
7.
Nat Commun ; 9(1): 128, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29317615

ABSTRACT

Hepoxilins (HXs) and trioxilins (TrXs) are involved in physiological processes such as inflammation, insulin secretion and pain perception in human. They are metabolites of polyunsaturated fatty acids (PUFAs), including arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, formed by 12-lipoxygenase (LOX) and epoxide hydrolase (EH) expressed by mammalian cells. Here, we identify ten types of HXs and TrXs, produced by the prokaryote Myxococcus xanthus, of which six types are new, namely, HXB5, HXD3, HXE3, TrXB5, TrXD3 and TrXE3. We succeed in the biotransformation of PUFAs into eight types of HXs (>35% conversion) and TrXs (>10% conversion) by expressing M. xanthus 12-LOX or 11-LOX with or without EH in Escherichia coli. We determine 11-hydroxy-eicosatetraenoic acid, HXB3, HXB4, HXD3, TrXB3 and TrXD3 as potential peroxisome proliferator-activated receptor-γ partial agonists. These findings may facilitate physiological studies and drug development based on lipid mediators.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Fatty Acids, Unsaturated/metabolism , Myxococcus xanthus/enzymology , 8,11,14-Eicosatrienoic Acid/chemistry , 8,11,14-Eicosatrienoic Acid/metabolism , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate Lipoxygenases/genetics , Arachidonate Lipoxygenases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biotransformation , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Fatty Acids, Unsaturated/chemistry , Metabolic Networks and Pathways/genetics , Molecular Structure , Myxococcus xanthus/genetics
8.
Sci Rep ; 7(1): 1934, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28512318

ABSTRACT

Sugar 4-epimerization reactions are important for the production of rare sugars and their derivatives, which have various potential industrial applications. For example, the production of tagatose, a functional sweetener, from fructose by sugar 4-epimerization is currently constrained because a fructose 4-epimerase does not exist in nature. We found that class II D-fructose-1,6-bisphosphate aldolase (FbaA) catalyzed the 4-epimerization of D-fructose-6-phosphate (F6P) to D-tagatose-6-phosphate (T6P) based on the prediction via structural comparisons with epimerase and molecular docking and the identification of the condensed products of C3 sugars. In vivo, the 4-epimerization activity of FbaA is normally repressed. This can be explained by our results showing the catalytic efficiency of D-fructose-6-phosphate kinase for F6P phosphorylation was significantly higher than that of FbaA for F6P epimerization. Here, we identified the epimerization reactions and the responsible catalytic residues through observation of the reactions of FbaA and L-rhamnulose-1-phosphate aldolases (RhaD) variants with substituted catalytic residues using different substrates. Moreover, we obtained detailed potential epimerization reaction mechanism of FbaA and a general epimerization mechanism of the class II aldolases L-fuculose-1-phosphate aldolase, RhaD, and FbaA. Thus, class II aldolases can be used as 4-epimerases for the stereo-selective synthesis of valuable carbohydrates.


Subject(s)
Fructose-Bisphosphate Aldolase/chemistry , Phosphates/chemistry , Sugars/chemistry , Enzyme Activation , Fructose-Bisphosphate Aldolase/metabolism , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Racemases and Epimerases/chemistry , Racemases and Epimerases/metabolism , Structure-Activity Relationship
9.
Biotechnol Lett ; 38(5): 817-23, 2016 May.
Article in English | MEDLINE | ID: mdl-26758723

ABSTRACT

OBJECTIVE: To produce δ-decalactone from linoleic acid by one-pot reaction using linoleate 13-hydratase with supplementation with whole Yarrowia lipolytica cells. RESULTS: Whole Y. lipolytica cells at 25 g l(-1) produced1.9 g l(-1) δ-decalactone from 7.5 g 13-hydroxy-9(Z)-octadecenoic acid l(-1) at pH 7.5 and 30 °C for 21 h. Linoleate 13-hydratase from Lactobacillus acidophilus at 3.5 g l(-1) with supplementation with 25 g Y. lipolytica cells l(-1) in one pot at 3 h produced 1.9 g l(-1) δ-decalactone from 10 g linoleic acid l(-1) via 13-hydroxy-9(Z)-octadecenoic acid intermediate at pH 7.5 and 30°C after 18 h, with a molar conversion yield of 31 % and productivity of 106 mg l(-1) h(-1). CONCLUSION: To the best of our knowledge, this is the first production of δ-decalactone using unsaturated fatty acid.


Subject(s)
Bacterial Proteins/metabolism , Hydro-Lyases/metabolism , Lactobacillus acidophilus/enzymology , Lactones/metabolism , Linoleic Acid/metabolism , Pyrones/metabolism , Yarrowia/metabolism , Hydrogen-Ion Concentration , Temperature
10.
Appl Microbiol Biotechnol ; 100(7): 3087-99, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26577673

ABSTRACT

A putative diol synthase from the fungus Glomerella cingulate was cloned and expressed in Escherichia coli. The putative diol synthase from G. cingulate was purified by His-Trap affinity chromatography with a specific activity of 0.87 U mg(-1), an eightfold purification, and a yield of 28%. One unit of activity was defined as the amount of enzyme required to produce 1 µmol of 7,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid (7,8-DiHODE) per min. The purified enzyme was estimated as a 127-kDa tetramer with a molecular mass of 510 kDa by gel filtration chromatography. The enzyme converted linoleic acid to a product, identified as 7S,8S-DiHODE by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy. The specific activity and catalytic efficiency (k cat/K m) of 7,8-diol synthase from G. cingulate for the conversion of fatty acid to dihydroxy fatty acid followed the order linoleic acid > α-linolenic acid > oleic acid > palmitoleic acid, indicating that the enzyme is a 7,8-linoleate diol synthase (7,8-LDS). The activity of the enzyme for the conversion of 7,8-DiHODE from linoleic acid was maximal at pH 6.5, 40 °C, and 2.5% (v/v) dimethyl sulfoxide (DMSO). Under these conditions, 7,8-LDS from G. cingulate converted 1.0 mM linoleic acid to 0.62 mM 7,8-DiHODE for 30 min, with a conversion yield of 62% (mol/mol), via 8-hydroperoxy-9,12(Z,Z)-octadecadienoic acid (8-HPODE) as an intermediate. The accumulation of 8-HPODE was due to a higher 8-dioxygenase activity in the N-terminal domain than hydroperoxide isomerase activity in the C-terminal domain.


Subject(s)
Colletotrichum/chemistry , Fungal Proteins/chemistry , Linoleic Acids/chemistry , Oxygenases/chemistry , Amino Acid Sequence , Cloning, Molecular , Colletotrichum/enzymology , Dimethyl Sulfoxide/chemistry , Dimethyl Sulfoxide/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fatty Acids, Monounsaturated/chemistry , Fatty Acids, Monounsaturated/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression , Hydrogen-Ion Concentration , Kinetics , Linoleic Acid/chemistry , Linoleic Acid/metabolism , Linoleic Acids/metabolism , Molecular Weight , Oleic Acid/chemistry , Oleic Acid/metabolism , Oxygenases/genetics , Oxygenases/metabolism , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Substrate Specificity
11.
PLoS One ; 10(9): e0137785, 2015.
Article in English | MEDLINE | ID: mdl-26379279

ABSTRACT

Hydroxy fatty acids (HFAs) derived from omega-3 polyunsaturated fatty acids have been known as versatile bioactive molecules. However, its practical production from omega-3 or omega-3 rich oil has not been well established. In the present study, the stereo-selective enzymatic production of 9R-hydroxy-10E,12Z,15Z-octadecatrienoic acid (9R-HOTE) from α-linolenic acid (ALA) in perilla seed oil (PO) hydrolyzate was achieved using purified recombinant 9R-lipoxygenase (9R-LOX) from Nostoc sp. SAG 25.82. The specific activity of the enzyme followed the order linoleic acid (LA) > ALA > γ-linolenic acid (GLA). A total of 75% fatty acids (ALA and LA) were used as a substrate for 9R-LOX from commercial PO by hydrolysis of Candida rugosa lipase. The optimal reaction conditions for the production of 9R-HOTE from ALA using 9R-LOX were pH 8.5, 15°C, 5% (v/v) acetone, 0.2% (w/v) Tween 80, 40 g/L ALA, and 1 g/L enzyme. Under these conditions, 9R-LOX produced 37.6 g/L 9R-HOTE from 40 g/L ALA for 1 h, with a conversion yield of 94% and a productivity of 37.6 g/L/h; and the enzyme produced 34 g/L 9R-HOTE from 40 g/L ALA in PO hydrolyzate for 1 h, with a conversion yields of 85% and a productivity of 34 g/L/h. The enzyme also converted 9R-hydroxy-10E,12Z-octadecadienoic acid (9R-HODE) from 40 g/L LA for 1.0 h, with a conversion yield of 95% and a productivity of 38.4 g/L. This is the highest productivity of HFA from both ALA and ALA-rich vegetable oil using LOX ever reported. Therefore, our result suggests an efficient method for the production of 9R-HFAs from LA and ALA in vegetable oil using recombinant LOX in biotechnology.


Subject(s)
Fatty Acids, Unsaturated/biosynthesis , Lipoxygenase/metabolism , Nostoc/metabolism , alpha-Linolenic Acid/metabolism , Candida/enzymology , Candida/metabolism , Gene Expression , Hydrolysis , Lipase/metabolism , Nostoc/enzymology , Plant Oils/metabolism
12.
Appl Microbiol Biotechnol ; 99(13): 5487-97, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25586578

ABSTRACT

A recombinant putative lipoxygenase from Burkholderia thailandensis with a specific activity of 26.4 U mg(-1) was purified using HisTrap affinity chromatography. The native enzyme was a 75-kDa dimer with a molecular mass of 150 kDa. The enzyme activity and catalytic efficiency (k cat/K m) were the highest for linoleic acid (k cat of 93.7 s(-1) and K m of 41.5 µM), followed by arachidonic acid, α-linolenic acid, and γ-linolenic acid. The enzyme was identified as an omega-6 linoleate lipoxygenase (or a linoleate 13S-lipoxygenase) based on genetic and HPLC analyses as well as substrate specificity. The reaction conditions for the enzymatic production of 13-hydroxy-9,11(Z,E)-octadecadienoic acid (13-HODE) were optimal at pH 7.5, 25 °C, 20 g l(-1) linoleic acid, 2.5 g l(-1) enzyme, 0.1 mM Cu(2+), and 6% (v/v) methanol. Under these conditions, linoleate 13-lipoxygenase from B. thailandensis produced 20.8 g l(-1) 13-HODE (70.2 mM) from 20 g l(-1) linoleic acid (71.3 mM) for 120 min, with a molar conversion yield of 98.5% and productivity of 10.4 g l(-1) h(-1). The molar conversion yield and productivity of 13-HODE obtained using B. thailandensis lipoxygenase were 151 and 158% higher, respectively, than those obtained using commercial soybean lipoxygenase under the optimum conditions for each enzyme at the same concentrations of substrate and enzyme.


Subject(s)
Burkholderia/enzymology , Linoleic Acid/metabolism , Linoleic Acids/metabolism , Lipoxygenase/metabolism , Amino Acid Sequence , Arachidonic Acid/metabolism , Burkholderia/genetics , Chromatography, Affinity , Chromatography, High Pressure Liquid , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrogen-Ion Concentration , Kinetics , Lipoxygenase/chemistry , Lipoxygenase/genetics , Lipoxygenase/isolation & purification , Molecular Sequence Data , Molecular Weight , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Homology , Substrate Specificity , Temperature
13.
J Agric Food Chem ; 62(28): 6736-45, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24967938

ABSTRACT

Candida boidinii was selected as a γ-dodecelactone producer because of the highest production of γ-dodecelactone from 10-hydroxy-12(Z)-octadecenoic acid among the 11 yeast strains tested. Under the reaction conditions of pH 5.5 and 25 °C with 5 g/L 10-hydroxy-12(Z)-octadecenoic acid and 30 g/L cells, whole C. boidinii cells produced 2.1 g/L γ-dodecelactone from 5 g/L 10-hydroxy-12(Z)-octadecenoic acid after 6 h, with a conversion yield of 64% (mol/mol) and a volumetric productivity of 350 mg/L/h. The production of γ-dodecelactone from safflower oil was performed by lipase hydrolysis reaction and two-step whole-cell biotransformation using Stenotrophomonas nitritireducens and C. boidinii. γ-Dodecelactone at 1.88 g/L was produced from 7.5 g/L safflower oil via 5 g/L 10-hydroxy-12(Z)-octadecenoic acid intermediate by these reactions after 8 h of reaction time, with a volumetric productivity of 235 mg/L/h and a conversion yield of 25% (w/w). To the best of the authors' knowledge, this is the highest volumetric productivity and conversion yield reported to date for the production of γ-lactone from natural oils.


Subject(s)
4-Butyrolactone/analogs & derivatives , Candida/metabolism , Oleic Acids/metabolism , Safflower Oil/metabolism , Stenotrophomonas/metabolism , 4-Butyrolactone/biosynthesis , Hydrogen-Ion Concentration , Lipase/metabolism , Temperature
14.
Appl Microbiol Biotechnol ; 97(18): 8265-72, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23868297

ABSTRACT

Among several fatty acids tested, oleic acid was selected as the most efficient inducer for the production of 4-hydroxydodecanoic acid, a metabolite of ß-oxidation, by Waltomyces lipofer. Cells were induced by incubation for 12 h in a medium containing 10 g l(-1) yeast extract, 10 g l(-1) peptone, 5 g l(-1) oleic acid, 1 g l(-1) glucose, and 0.05 % (w/v) Tween 80. The optimal reaction conditions for the production of γ-lactones by induced cells were pH 6.5, 35 °C, 200 rpm, 0.71 M Tris, 60 g l(-1) hydroxy fatty acid, and 20 g l(-1) cells. Non-induced cells produced 38 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 63 % (w/w) and a productivity of 1.3 g l(-1) h(-1) under the optimized conditions, whereas induced cells produced 51 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 85 % (w/w) and a productivity of 1.7 g l(-1) h(-1). The conversion yield and productivity of induced cells were 22 % and 1.3-fold higher, respectively, than those of non-induced cells. Induced cells also produced 28 g l(-1) γ-decalactone and 12 g l(-1) γ-butyrolactone from 60 g l(-1) 12-hydroxystearic acid and 60 g l(-1) 10-hydroxydecanoic acid, respectively, after 30 h. The concentration, conversion yield, and productivity of γ-dodecalactone and γ-decalactone are the highest reported thus far. This is the first study on the biotechnological production of γ-butyrolactone.


Subject(s)
Fatty Acids/metabolism , Lactones/metabolism , Oleic Acid/metabolism , Saccharomycetales/metabolism , Culture Media/metabolism
15.
Appl Environ Microbiol ; 79(8): 2636-41, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23396347

ABSTRACT

A new biotransformation process for the production of the flavor lactone was developed by using permeabilized Waltomyces lipofer, which was selected as an efficient γ-dodecalactone-producing yeast among 10 oleaginous yeast strains. The optimal reaction conditions for γ-dodecalactone production by permeabilized W. lipofer cells were pH 6.5, 35°C, 200 rpm, 0.7 M Tris, 60 g/liter of 10-hydroxystearic acid, and 30 g/liter of cells. Under these conditions, nonpermeabilized cells produced 12 g/liter of γ-dodecalactone after 30 h, with a conversion yield of 21% (wt/wt) and a productivity of 0.4 g/liter/h, whereas permeabilized cells obtained after sequential treatments with 50% ethanol and 0.5% Triton X-100 produced 46 g/liter of γ-dodecalactone after 30 h, with a conversion yield of 76% (wt/wt) and a productivity of 1.5 g/liter/h. These values were 3.7- and 3.8-fold higher than those obtained using nonpermeabilized cells. These are the highest reported concentration, conversion yield, and productivity for the production of the bioflavor lactone.


Subject(s)
4-Butyrolactone/analogs & derivatives , Saccharomycetales/metabolism , Stearic Acids/metabolism , 4-Butyrolactone/metabolism , Biotransformation , Industrial Microbiology/methods , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...