Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6012, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224198

ABSTRACT

Holography is one of the most prominent approaches to realize true-to-life reconstructions of objects. However, owing to the limited resolution of spatial light modulators compared to static holograms, reconstructed objects exhibit various coherent properties, such as content-dependent defocus blur and interference-induced noise. The coherent properties severely distort depth perception, the core of holographic displays to realize 3D scenes beyond 2D displays. Here, we propose a hologram that imitates defocus blur of incoherent light by engineering diffracted pattern of coherent light with adopting multi-plane holography, thereby offering real world-like defocus blur and photorealistic reconstruction. The proposed hologram is synthesized by optimizing a wave field to reconstruct numerous varifocal images after propagating the corresponding focal distances where the varifocal images are rendered using a physically-based renderer. Moreover, to reduce the computational costs associated with rendering and optimizing, we also demonstrate a network-based synthetic method that requires only an RGB-D image.

2.
Appl Opt ; 61(5): B237-B245, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35201145

ABSTRACT

Holography has been considered as the ultimate technology for three-dimensional visual experience. Compared to the well-established static holographic technology, holographic video display is still in the research and development stage, before commercial products. This paper reviews various kinds of researches and related systems from the beginning of holographic video display to recent improvements, compares each specification, and describes their features. We discuss the key requirements for holographic display to be commercialized and widely used in everyday life.

3.
Nat Commun ; 11(1): 5568, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33173031

ABSTRACT

Since its discovery almost 70 years ago, the hologram has been considered to reproduce the most realistic three dimensional images without visual side effects. Holographic video has been extensively researched for commercialization, since Benton et al. at MIT Media Lab developed the first holographic video systems in 1990. However, commercially available holographic video displays have not been introduced yet for several reasons: narrow viewing angle, bulky optics and heavy computing power. Here we present an interactive slim-panel holographic video display using a steering-backlight unit and a holographic video processor to solve the above issues. The steering-backlight unit enables to expand the viewing angle by 30 times and its diffractive waveguide architecture makes a slim display form-factor. The holographic video processor computes high quality holograms in real-time on a single-chip. We suggest that the slim-panel holographic display can provide realistic three-dimensional video in office and household environments.

4.
Appl Opt ; 59(24): 7462-7468, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32902515

ABSTRACT

A slim beam deflector that satisfies both a large steering angle and a large area can be very useful in various applications. However, a smaller electrode pitch for a large steering angle and enlargement of its area are trade-off relations due to the limited number of control channels in an electrically tunable beam deflector system. For a large steering angle in the active area where actual diffraction occurs, an indium tin oxide electrode of 2 µm pitch was implemented through a stepper lithography. The via-hole process was developed to expand the reduced active area due to the small electrode pitch. We developed a beam deflector with 7200 controllable channels in an active area of 14.4mm×14.4mm. The maximum steering angle is 7.643° at a wavelength of 532 nm.

5.
Opt Express ; 22(18): 21460-70, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25321524

ABSTRACT

The modulation efficiency of the double-phase hologram macro-pixel that is designed for complex modulation of light waves is defined and analyzed. The scale-down of the double-phase hologram macro-pixel associated with the construction of complex spatial light modulators is discussed.

6.
Opt Express ; 21(12): 14047-55, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23787594

ABSTRACT

We propose a hogel overlapping method for the holographic printer to enhance the lateral resolution of holographic stereograms. The hogel size is directly related to the lateral resolution of the holographic stereogram. Our analysis by computer simulation shows that there is a limit to decreasing the hogel size while printing holographic stereograms. Instead of reducing the size of hogel, the lateral resolution of holographic stereograms can be enhanced by printing overlapped hogels, which makes it possible to take advantage of multiplexing property of the volume hologram. We built a holographic printer, and recorded two holographic stereograms using the conventional and proposed overlapping methods. The images and movies of the holographic stereograms experimentally captured were compared between the conventional and proposed methods. The experimental results confirm that the proposed hogel overlapping method improves the lateral resolution of holographic stereograms compared to the conventional holographic printing method.


Subject(s)
Computer-Aided Design , Holography/instrumentation , Image Enhancement/instrumentation , Imaging, Three-Dimensional/instrumentation , Models, Theoretical , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
7.
Opt Express ; 21(1): 70-8, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23388897

ABSTRACT

An autocorrelator based on a Fabry-Perot interferometer is proposed for ultrashort pulse measurement. Main features of this autocorrelator due to the superposition of multiple pulses were investigated experimentally and theoretically. It turns out that the signal from a Fabry-Perot interferometer can be used as an autocorrelator signal. This autocorrelator provides more compact setup with a much easier alignment than a conventional autocorrelator based on a Michelson interferometer.

8.
Opt Express ; 20(3): 3325-30, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-22330570

ABSTRACT

A new optical design for an autocorrelator using a double wedge is proposed and experimentally demonstrated. It consists of two wedges placed in a mirror-image configuration. Instead of splitting a beam by 90 degree angle as done in a conventional autocorrelator based on Michelson interferometer, the wedge splits the beam by 180 degrees. The angle of incidence is nearly normal to all the wedge surfaces so that this new design provides the compact in-line layout for an autocorrelator. The time delay can be adjustable by scanning the separation between two wedges. Due to the geometry, the double wedge produces multiple reflections, but they are angularly separated among each other. The laser pulse of 28 fs duration is measured by using the double wedge autocorrelator and compared with Michelson-type autocorrelator. The effect of material dispersion and angular chirp introduced by the wedge pair is discussed for shorter pulse measurement.


Subject(s)
Interferometry/instrumentation , Lasers , Refractometry/instrumentation , Equipment Design , Equipment Failure Analysis , Miniaturization
SELECTION OF CITATIONS
SEARCH DETAIL
...