Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6385, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821427

ABSTRACT

Neuromorphic computing aims to emulate the computing processes of the brain by replicating the functions of biological neural networks using electronic counterparts. One promising approach is dendritic computing, which takes inspiration from the multi-dendritic branch structure of neurons to enhance the processing capability of artificial neural networks. While there has been a recent surge of interest in implementing dendritic computing using emerging devices, achieving artificial dendrites with throughputs and energy efficiency comparable to those of the human brain has proven challenging. In this study, we report on the development of a compact and low-power neurotransistor based on a vertical dual-gate electrolyte-gated transistor (EGT) with short-term memory characteristics, a 30 nm channel length, a record-low read power of ~3.16 fW and a biology-comparable read energy of ~30 fJ. Leveraging this neurotransistor, we demonstrate dendrite integration as well as digital and analog dendritic computing for coincidence detection. We also showcase the potential of neurotransistors in realizing advanced brain-like functions by developing a hardware neural network and demonstrating bio-inspired sound localization. Our results suggest that the neurotransistor-based approach may pave the way for next-generation neuromorphic computing with energy efficiency on par with those of the brain.


Subject(s)
Memory, Short-Term , Neural Networks, Computer , Humans , Computers , Electronics , Brain/physiology
2.
Front Neurosci ; 15: 806325, 2021.
Article in English | MEDLINE | ID: mdl-35126046

ABSTRACT

Realization of spiking neural network (SNN) hardware with high energy efficiency and high integration may provide a promising solution to data processing challenges in future internet of things (IoT) and artificial intelligence (AI). Recently, design of multi-core reconfigurable SNN chip based on resistive random-access memory (RRAM) is drawing great attention, owing to the unique properties of RRAM, e.g., high integration density, low power consumption, and processing-in-memory (PIM). Therefore, RRAM-based SNN chip may have further improvements in integration and energy efficiency. The design of such a chip will face the following problems: significant delay in pulse transmission due to complex logic control and inter-core communication; high risk of digital, analog, and RRAM hybrid design; and non-ideal characteristics of analog circuit and RRAM. In order to effectively bridge the gap between device, circuit, algorithm, and architecture, this paper proposes a simulation model-FangTianSim, which covers analog neuron circuit, RRAM model and multi-core architecture and its accuracy is at the clock level. This model can be used to verify the functionalities, delay, and power consumption of SNN chip. This information cannot only be used to verify the rationality of the architecture but also guide the chip design. In order to map different network topologies on the chip, SNN representation format, interpreter, and instruction generator are designed. Finally, the function of FangTianSim is verified on liquid state machine (LSM), fully connected neural network (FCNN), and convolutional neural network (CNN).

SELECTION OF CITATIONS
SEARCH DETAIL
...