Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1004, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307843

ABSTRACT

Amyloid-ß (Aß) oligomers are implicated in the onset of Alzheimer's disease (AD). Herein, quinoline-derived half-curcumin-dioxaborine (Q-OB) fluorescent probe was designed for detecting Aß oligomers by finely tailoring the hydrophobicity of the biannulate donor motifs in donor-π-acceptor structure. Q-OB shows a great sensing potency in dynamically monitoring oligomerization of Aß during amyloid fibrillogenesis in vitro. In addition, we applied this strategy to fluorometrically analyze Aß self-assembly kinetics in the cerebrospinal fluids (CSF) of AD patients. The fluorescence intensity of Q-OB in AD patients' CSF revealed a marked change of log (I/I0) value of 0.34 ± 0.13 (cognitive normal), 0.15 ± 0.12 (mild cognitive impairment), and 0.14 ± 0.10 (AD dementia), guiding to distinguish a state of AD continuum for early diagnosis of AD. These studies demonstrate the potential of our approach can expand the currently available preclinical diagnostic platform for the early stages of AD, aiding in the disruption of pathological progression and the development of appropriate treatment strategies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Amyloidogenic Proteins , tau Proteins/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
2.
Bioact Mater ; 34: 164-180, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38343773

ABSTRACT

Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.

3.
Angew Chem Int Ed Engl ; 62(40): e202310408, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37584948

ABSTRACT

Cerebral ischemia-reperfusion injury (CIRI) is intimately associated with the redox regulation of biothiol, a crucial antioxidant marker that precludes the onset of ROS. We designed a novel fluorescent probe, DCI-Ac-Py, showing various physicochemical properties, such as high selectivity, exceptional signal-to-noise ratio, near-infrared (NIR) optical window, and blood-brain barrier (BBB) penetrability, for detecting biothiols in the brain. The picolinate serves as a specific recognition group that is rapidly activated by biothiol and undergoes nucleophilic substitution with the adjacent acrylic ester to yield the desired NIR probe. Additionally, the probe's lipid solubility is improved through the inclusion of halogen atoms, which aids in penetrating the BBB. Using DCI-Ac-Py, we investigated changes of biothiols in vivo in the brains of mice during CIRI. We found that biothiol-mediated NF-kB classical (P65-related) and nonclassical (RelB-related) pathways contribute to abundant ROS production induced by CIRI and that biothiols are involved in redox regulation. These findings provide new insights into the study of CIRI and shed light on the physiological and pathological mechanisms of biothiols in the brain.


Subject(s)
Brain Ischemia , Reperfusion Injury , Mice , Animals , Fluorescent Dyes/chemistry , Reactive Oxygen Species , Signal Transduction , NF-kappa B/metabolism , Reperfusion Injury/metabolism , Brain Ischemia/diagnostic imaging
4.
Biochem Biophys Rep ; 35: 101517, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37521373

ABSTRACT

The goal of this paper was to look into the anti-tumor mechanism of Non-Steroidal Anti-Inflammatory Drug (NSAID)-conjugated SN-38 Prodrug in A549 lung cancer cells. We found that Indomethacine-SN-38 (IndoSN-38) and Naproxen-SN-38(NaproSN-38) as a theranostic prodrug targeting cyclooxygenase-2(COX-2) in cancer cells inhibited A549 cell viability in a dose-dependent fashion. IndoSN-38 and NaproSN-38 inhibited A549 cell viability in a dose-dependent fashion. The suppression of A549 cell viability was due to induction of the cell apoptosis by enhancing the activities of Caspase 3 and Caspase 8. The cell cycle arrest of sub-G1 was found in the cells treated with IndoSN-38 or NaproSN-38. Collectively, these data suggested that the anti-proliferative activities of the NSAID-conjugated SN-38 prodrugs were due to promotion of cell death and arresting the cell cycle which was similar with those of SN-38.

5.
Chem Soc Rev ; 52(12): 3955-3972, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37218295

ABSTRACT

Ferroptosis, an iron-dependent programmed cell death mechanism, is regulated by distinct molecular pathways of lipid peroxidation caused by intracellular iron supplementation and glutathione (GSH) synthesis inhibition. It has attracted a great deal of attention as a viable alternative to typical apoptosis-based cancer therapy that exhibits drug resistance. For efficient therapeutic utilization of such a unique and desirable mechanism, precise control using various stimuli to activate the administered nanocarriers is essential. Specific conditions in the tumor microenvironment (e.g., acidic pH, high level of ROS and GSH, hypoxia, etc.) can be exploited as endogenous stimuli to ensure high specificity of the tumor site. Maximized spatiotemporal controllability can be assured by utilizing external energy sources (e.g., magnetic fields, ultrasound, microwaves, light, etc.) as exogenous stimuli that can provide on-demand remote controllability for customized deep tumor therapy with a low inter-patient variation. Strikingly, the utilization of dual endogenous and/or exogenous stimuli provides a new direction for efficient cancer therapy. This review highlights recent advances in the utilization of various endogenous and exogenous stimuli to activate the reactions of nanocarriers for ferroptosis-based cancer therapy that can inspire the field of cancer therapy, particularly for the treatment of intractable tumors.


Subject(s)
Ferroptosis , Neoplasms , Humans , Neoplasms/drug therapy , Apoptosis , Iron/metabolism , Tumor Microenvironment
6.
Acta Pharm Sin B ; 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36846153

ABSTRACT

COVID-19, caused by SARS-CoV-2, has resulted in serious economic and health burdens. Current treatments remain inadequate to extinguish the epidemic, and efficient therapeutic approaches for COVID-19 are urgently being sought. Interestingly, accumulating evidence suggests that microenvironmental disorder plays an important role in the progression of COVID-19 in patients. In addition, recent advances in nanomaterial technologies provide promising opportunities for alleviating the altered homeostasis induced by a viral infection, providing new insight into COVID-19 treatment. Most literature reviews focus only on certain aspects of microenvironment alterations and fail to provide a comprehensive overview of the changes in homeostasis in COVID-19 patients. To fill this gap, this review systematically discusses alterations of homeostasis in COVID-19 patients and potential mechanisms. Next, advances in nanotechnology-based strategies for promoting homeostasis restoration are summarized. Finally, we discuss the challenges and prospects of using nanomaterials for COVID-19 management. This review provides a new strategy and insights into treating COVID-19 and other diseases associated with microenvironment disorders.

7.
Chem Soc Rev ; 52(1): 30-46, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36511945

ABSTRACT

Mechanical stimulation utilizing deep tissue-penetrating and focusable energy sources, such as ultrasound and magnetic fields, is regarded as an emerging patient-friendly and effective therapeutic strategy to overcome the limitations of conventional cancer therapies based on fundamental external stimuli such as light, heat, electricity, radiation, or microwaves. Recent efforts have suggested that mechanical stimuli-driven cancer therapy (henceforth referred to as "mechanical cancer therapy") could provide a direct therapeutic effect and intelligent control to augment other anti-cancer systems as a synergistic combinational cancer treatment. This review article highlights the latest advances in mechanical cancer therapy to present a novel perspective on the fundamental principles of ultrasound- and magnetic field-mediated mechanical forces, including compression, tension, shear force, and torque, that can be generated in a cellular microenvironment using mechanical stimuli-activated functional materials. Additionally, this article will shed light on mechanical cancer therapy and inspire future research to pursue the development of ultrasound- and magnetic-field-activated materials and their applications in this field.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Mechanical Phenomena , Magnetic Fields , Tumor Microenvironment
8.
Biosens Bioelectron ; 217: 114701, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36115125

ABSTRACT

Fluorescence bioimaging via the second near-infrared (NIR-II) window can provide precise images with a low background signal due to attenuated absorption and scattering in biological tissues. However, it is challenging to realize organic fluorophores' absorption/emission wavelength beyond 1300 nm depending on their intrinsic emission of monomers. Reducing parasitic aggregation caused quenching (ACQ) effect is expected as an efficient strategy to achieve fluorescence bioimaging in an ideal region. Herein, two NIR-II xanthene fluorophores (CM1 and CM2) with different side chains on identical skeletons were synthesized. Besides, their corresponding assemblies (CM1 NPs and CM2 NPs) were subsequently prepared, which exhibited distinct spectroscopic properties. Notably, CM2 NPs exhibited a significantly reduced ACQ effect with maximal absorption/emission extended to 1235/1250 nm. Molecular dynamics simulations revealed that intermolecular hydrogen bond, π-π interaction, and CH-π interaction of CM2 were essential for the reduced ACQ effect. In vivo hindlimb angiography showed that CM2 NPs could distinguish the neighboring artery and vein in high resolution. Besides, CM2 NPs could achieve angiography beyond 1300 nm and even resolve capillaries as small as 0.23 mm. This study provides a new strategy for reducing the ACQ effect by controlling different side chains of NIR-II xanthene dyes for angiography beyond 1300 nm.


Subject(s)
Biosensing Techniques , Xanthenes , Angiography , Animals , Fluorescent Dyes/chemistry , Ionophores , Optical Imaging/methods
9.
Bioact Mater ; 14: 76-85, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35310350

ABSTRACT

An increased demand for iron is a hallmark of cancer cells and is thought necessary to promote high cell proliferation, tumor progression and metastasis. This makes iron metabolism an attractive therapeutic target. Unfortunately, current iron-based therapeutic strategies often lack effectiveness and can elicit off-target toxicities. We report here a dual-therapeutic prodrug, DOXjade, that allows for iron chelation chemo-photothermal cancer therapy. This prodrug takes advantage of the clinically approved iron chelator deferasirox (ExJade®) and the topoisomerase 2 inhibitor, doxorubicin (DOX). Loading DOXjade onto ultrathin 2D Ti3C2 MXene nanosheets produces a construct, Ti 3 C 2 -PVP@DOXjade, that allows the iron chelation and chemotherapeutic functions of DOXjade to be photo-activated at the tumor sites, while potentiating a robust photothermal effect with photothermal conversion efficiencies of up to 40%. Antitumor mechanistic investigations reveal that upon activation, Ti 3 C 2 -PVP@DOXjade serves to promote apoptotic cell death and downregulate the iron depletion-induced iron transferrin receptor (TfR). A tumor pH-responsive iron chelation/photothermal/chemotherapy antitumor effect was achieved both in vitro and in vivo. The results of this study highlight what may constitute a promising iron chelation-based phototherapeutic approach to cancer therapy.

10.
Bioact Mater ; 13: 239-248, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35224305

ABSTRACT

The pathological origin of Alzheimer's disease (AD) is still shrouded in mystery, despite intensive worldwide research efforts. The selective visualization of ß-amyloid (Aß), the most abundant proteinaceous deposit in AD, is pivotal to reveal AD pathology. To date, several small-molecule fluorophores for Aß species have been developed, with increasing binding affinities. In the current work, two organic small-molecule dioxaborine-derived fluorophores were rationally designed through tailoring the hydrophobicity with the aim to enhance the binding affinity for Aß1-42 fibrils -while concurrently preventing poor aqueous solubility-via biannulate donor motifs in D-π-A dyes. An unprecedented sub-nanomolar affinity was found (K d = 0.62 ± 0.33 nM) and applied to super-sensitive and red-emissive fluorescent staining of amyloid plaques in cortical brain tissue ex vivo. These fluorophores expand the dioxaborine-curcumin-based family of Aß-sensitive fluorophores with a promising new imaging agent.

11.
Chem Soc Rev ; 50(23): 12883-12896, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34608468

ABSTRACT

Finding a personalized nano theranostics solution, a nanomedicine for cancer diagnosis and therapy, is among the top challenges of current medicinal science. Porous organic polymers (POPs) are permanent porous organic materials prepared by linking relatively rigid multidimensional organic building blocks. POP nanoparticles have a remarkable advantage for cancer theranostics owing to their specific physicochemical characteristics such as high surface area, convincing pore size engineering, stimuli-responsive degradability, negligible toxicity, open covalent post-synthesis modification possibilities etc. POPs have crystalline and non-crystalline characteristics; crystalline POPs are popularly known as covalent organic frameworks (COFs), and have shown potential application across research areas in science. The early research and development on theranostics applications of nanoscale POPs has shown tremendous future potential for clinical translation. This tutorial review highlights the recently developed promising applications of nPOPs in drug loading, targeted delivery, endogenous and exogenous stimuli-responsive release, cancer imaging and combination therapy, regardless of their crystalline and poorly crystalline properties. The review will provide a platform for the future development and clinical translation of nPOPs by solving fundamental challenges of cancer nanomedicines in drug loading efficiency, size-optimization, biocompatibility, dispersibility and cell uptake ability.


Subject(s)
Neoplasms , Pharmaceutical Preparations , Humans , Neoplasms/diagnosis , Neoplasms/drug therapy , Polymers , Porosity , Precision Medicine
12.
Chem Soc Rev ; 50(16): 8887-8902, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34195735

ABSTRACT

Abnormal microenvironments (viscosity, polarity, pH, etc.) have been verified to be closely associated with numerous pathophysiological processes such as inflammation, neurodegenerative diseases, and cancer. As a result, deep insights into these pathophysiological microenvironments are particularly beneficial for clinical diagnosis and treatment. However, the monitoring of pathophysiological microenvironments is unattainable by the traditional clinical diagnostic techniques such as magnetic resonance imaging, computed tomography, and positron emission tomography. Recently, fluorescence imaging has shown tremendous advantages and potential in the tracing of pathophysiological microenvironment variations. In this context, a general discussion is provided on the state-of-the-art progress of fluorescent probes for visualizing pathophysiological microenvironments (viscosity, pH, and polarity), since 2016, as well as the future perspectives in this challenging field.


Subject(s)
Cellular Microenvironment , Fluorescent Dyes/analysis , Optical Imaging , Animals , Fluorescence
13.
ACS Appl Bio Mater ; 4(3): 2120-2127, 2021 03 15.
Article in English | MEDLINE | ID: mdl-35014340

ABSTRACT

Melanoma is the most threatening form of metastatic skin cancer that develops from melanocytes and causes a large majority of deaths due to poor therapeutic prognosis. It has significant limitations in treatment because it shows great resistance to chemotherapy, radiotherapy, and other therapeutic methods. A noninvasive and clinically accepted therapeutic modality, photodynamic therapy (PDT), is a promising treatment option, but it is limitedly applied for melanoma skin cancer treatment. This is because most of the photosensitizers are unlikely to be expected to have a remarkable effect on melanoma due to drug efflux by melanin pigmentation and intrinsic antioxidant defense mechanisms. Moreover, melanin is a dominant absorber in the spectral region of 500-600 nm that can cause the decreased photoreaction efficiency of photosensitizers. Herein, to overcome these drawbacks, we have developed a phenylthiourea-conjugated BODIPY photosensitizer (PTUBDP) for tyrosinase-positive melanoma-targeted PDT. In light of our results, it exhibited an enhanced cytotoxic efficacy compared to BDP, a parallel PDT agent that absence of phenylthiourea unit. PTUBDP shows outstanding effects of increased oxidative stress by an enhanced cellular uptake of the tyrosinase positive melanoma cell line (B16F10). This work presents increased therapeutic efficacy through the combined therapeutic approach, enabling enhanced reactive oxygen species (ROS) generation as well as overcoming the critical limitations of melanoma.


Subject(s)
Antineoplastic Agents/pharmacology , Biocompatible Materials/pharmacology , Melanoma/drug therapy , Monophenol Monooxygenase/metabolism , Photochemotherapy , Photosensitizing Agents/pharmacology , Skin Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Boron Compounds/chemistry , Boron Compounds/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Materials Testing , Melanoma/metabolism , Melanoma/pathology , Molecular Structure , Particle Size , Phenylthiourea/chemistry , Phenylthiourea/pharmacology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Melanoma, Cutaneous Malignant
14.
J Am Chem Soc ; 142(38): 16156-16160, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32914968

ABSTRACT

The NIR absorptivity of the metallotexaphyrin derivatives MMn, MGd, and MLu for photoacoustic (PA)-based imaging is explored in this study. All three complexes demonstrated excellent photostabilities; however, MMn provided the greatest PA signal intensities in both doubly distilled water and RAW 264.7 cells. In vivo experiments using a prostate tumor mouse model were performed. MMn displayed no adverse toxicity to major organs as inferred from hematoxylin and eosin (H&E) staining and cell blood count testing. MMn also allowed for PA-based imaging of tumors with excellent in vivo stability to provide 3D tumor diagnostic information. Based on the present findings and previous magnetic resonance imaging (MRI) studies, we believe MMn may have a role to play either as a stand-alone PA contrast agent or as a single molecule dual modal (PA and MR) imaging agent for tumor diagnosis.


Subject(s)
Contrast Media/chemistry , Manganese/chemistry , Photoacoustic Techniques , Porphyrins/chemistry , Prostatic Neoplasms/diagnostic imaging , Animals , Cell Line, Tumor , Humans , Infrared Rays , Magnetic Resonance Imaging , Male , Mice , Mice, Nude , Molecular Structure , Neoplasms, Experimental/diagnostic imaging , RAW 264.7 Cells
15.
Chem Commun (Camb) ; 56(71): 10317-10320, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32760939

ABSTRACT

A novel ferrocene decorated vinyl pyridinium-substituted tetraphenylethylene (TPEPY-S-Fc) linked by a disulfide bond was designed as a GSH activatable photosensitizer by aggregation-induced emission for imaging-guided photodynamic therapy of cancer cells.


Subject(s)
Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Glutathione/metabolism , Molecular Imaging , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Cell Line, Tumor , Disulfides/chemistry , Humans , Stilbenes/chemistry , Stilbenes/pharmacology
16.
Biomaterials ; 259: 120315, 2020 11.
Article in English | MEDLINE | ID: mdl-32836057

ABSTRACT

Despite the wide application of the traditional NIR-I phototheranostic platforms in basic research and clinical studies, problems such as tissue scattering, auto-fluorescence combined with aggregation caused quenching hamper precise image-guided phototherapy. Herein, we developed a multifunctional NIR-II phototheranostic platform using a novel AIE-based dye (ZSY-TPE) for single laser-activated imaging-guided combined photothermal and photodynamic therapies of tumors and pathogens. As confirmed through in vivo studies, the ZSY-TPE dots displayed precise and efficient high-performance NIR-II imaging-guided combination phototherapy against 4T1 tumor as well as S. aureus-infected mice models without any noticeable side effects. The current study demonstrates ZSY-TPE as a powerful phototheranostic platform for precise NIR-II fluorescence/PA imaging and synergistic photodynamic/photothermal therapy of tumors and bacterial infections.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Lasers , Mice , Neoplasms/drug therapy , Phototherapy , Photothermal Therapy , Staphylococcus aureus
17.
Chem Soc Rev ; 49(22): 8065-8087, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-32567633

ABSTRACT

Optical techniques using developed laser and optical devices have made a profound impact on modern medicine, with "biomedical optics" becoming an emerging field. Sophisticated technologies have been developed in cancer nanomedicine, such as photothermal therapy and photodynamic therapy, among others. However, single-mode phototherapy cannot completely treat persistent tumors, with the challenges of relapse or metastasis remaining; therefore, combinatorial strategies are being developed. In this review, the role of light in cancer therapy and the challenges of phototherapy are discussed. The development of combinatorial strategies with other therapeutic methods, including chemotherapy, immunotherapy, gene therapy, and radiotherapy, is presented and future directions are further discussed. This review aims to highlight the significance of light in cancer therapy and discuss the combinatorial strategies that show promise in addressing the challenges of phototherapy.


Subject(s)
Nanomedicine , Neoplasms/therapy , Phototherapy , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...