Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Environ Res ; 216(Pt 3): 114657, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36328223

ABSTRACT

Nickel-impregnated TiO2 photocatalyst (NiTP) responding to visible light was prepared by the liquid phase plasma (LPP) method, and its photoactivity was evaluated in degrading an antibiotic (oxytetracycline, OTC). For preparing the photocatalyst, nickel was uniformly impregnated onto TiO2 (P-25) powder, and the nickel content increased as the number of LPP reactions increased. In addition, the morphology and lattice of NiTP were observed through various instrumental analyses, and it was confirmed that NiO-type nanoparticles were impregnated in NiTP. Fundamentally, as the amount of impregnated nickel in the TiO2 powder increased sufficiently, the band gap energy of TiO2 decreased, and eventually, the NiTP excited by visible light was synthesized. Further, OTC had a decomposition reaction pathway in which active radicals generated in OTC photocatalytic reaction under NiTP were finally mineralized through reactions such as decarboxamidation, hydration, deamination, demethylation, and dehydroxylation. In effect, we succeeded in synthesizing a photocatalyst useable under visible light by performing only the LPP single process and developed a new advanced oxidation process (AOP) that can remove toxic antibiotics.


Subject(s)
Oxytetracycline , Nickel , Catalysis , Powders , Titanium , Light , Anti-Bacterial Agents
2.
Nanomaterials (Basel) ; 11(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34947734

ABSTRACT

The mono and bi-metallic nanoparticles have conspicuous properties and are widely used in the environment, energy, and medical fields. In this study, bimetallic nanoparticles composed of silver and iron were precipitated on the surface of activated carbon in a single process using plasma in liquid process (PLP). Silver-iron ions and various radicals were actively generated in the aqueous reactant solution by the PLP. Although metals were precipitated on AC depending on the number of precursors added to the aqueous reactant solution, the standard reduction potential of silver ions was higher than that of iron ions, so silver precipitated on AC. The silver precipitate on AC was a mixture of metallic silver and silver oxide, and iron was present as Fe3O4. Spherical nanoparticles, 100-120 nm in size, were observed on the surface of the Ag-Fe/AC composite. The composition of the bimetallic nanoparticles could be controlled by considering the ionization tendency and standard reduction potential of metal ions and controlling the concentration of the precursors. The PLP presented in this study can be applied to the preparing method of bimetallic nanoparticle/carbon materials and can be expected to be used in the prepare of energy and environmental materials such as MFC and absorption materials for removing pollutants.

3.
Nanomaterials (Basel) ; 11(9)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34578660

ABSTRACT

Ag particles were precipitated on an activated carbon fiber (ACF) surface using a liquid phase plasma (LPP) method to prepare a Ag/ACF composite. The efficiency was examined by applying it as an adsorbent in the acetaldehyde adsorption experiment. Field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry confirmed that Ag particles were distributed uniformly on an ACF surface. X-ray diffraction and X-ray photoelectron spectroscopy confirmed that metallic silver (Ag0) and silver oxide (Ag2O) precipitated simultaneously on the ACF surface. Although the precipitated Ag particles blocked the pores of the ACF, the specific surface area of the Ag/ACF composite material decreased, but the adsorption capacity of acetaldehyde was improved. The AA adsorption of ACF and Ag/ACF composites performed in this study was suitable for the Dose-Response model.

4.
Polymers (Basel) ; 12(6)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604903

ABSTRACT

Surface enhancement of components is vital for achieving superior properties in a composite system. In this study, carbon nanotubes (CNTs) were grown on carbon fiber (CF) substrates to improve the surface area and, in turn, increase the adhesion between epoxy-resin and CFs. Nickel (Ni) was used as the catalyst in CNT growth, and was coated on CF sheets via the electroplating method. Surface energetics of CNT-grown CFs and their work of adhesion with epoxy resin were measured. SEM and TEM were used to analyze the morphology of the samples. After the optimization of surface energetics by catalyst weight ratio (15 wt.% Ni), CF-reinforced plastic (CFRP) samples were prepared using the hand lay-up method. To validate the effect of chemical vapor deposition (CVD)-grown CNTs on CFRP properties, samples were also prepared where CNT powder was added to epoxy prior to reinforcement with Ni-coated CFs. CFRP specimens were tested to determine their electrical resistivity, flexural strength, and ductility index. The electrical resistivity of CNT-grown CFRP was found to be about 9 and 2.3 times lower than those of as-received CFRP and CNT-added Ni-CFRP, respectively. Flexural strength of CNT-grown Ni-CFRP was enhanced by 52.9% of that of as-received CFRP. Interestingly, the ductility index in CNT-grown Ni-CFRP was 40% lower than that of CNT-added Ni-CFRP. This was attributed to the tip-growth formation of CNTs and the breakage of Ni coating.

5.
Polymers (Basel) ; 11(12)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817191

ABSTRACT

The purpose of this study is to prepare boron nitride (BN)-coated carbon fibers (CF) and to investigate the properties of as-prepared fibers as well as the effect of coating on their respective polymer-matrix composites. A sequence of solution dipping and heat treatment was performed to blanket the CFs with a BN microlayer. The CFs were first dipped in a boric acid solution and then annealed in an ammonia-nitrogen mixed gas atmosphere for nitriding. The presence of BN on the CF surface was confirmed using FTIR, XPS, and SEM analyses. Polypropylene was reinforced with BN-CFs as the first filler and graphite flake as the secondary filler. The composite characterization indicates approximately 60% improvement in through-plane thermal conductivity and about 700% increase in the electrical resistivity of samples containing BN-CFs at 20 phr. An increase of two orders of magnitude in the electrical resistivity of BN-CF monofilaments was also observed.

6.
Nanomaterials (Basel) ; 9(9)2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31540012

ABSTRACT

The unburned hydrocarbon (HC) emissions of automobiles are subject to strong regulations because they are known to be converted into fine dust, ozone, and photochemical smog. Pitch-based activated carbon fibers (ACF) prepared by steam activation can be a good solution for HC removal. The structural characteristics of ACF were observed using X-ray diffraction. The pore characteristics were investigated using N2/77K adsorption isotherms. The butane working capacity (BWC) was determined according to ASTM D5228. From the results, the specific surface area and total pore volume of the ACF were determined to be 840-2630 m2/g and 0.33-1.34 cm3/g, respectively. The butane activity and butane retentivity of the ACF increased with increasing activation time and were observed to range between 15.78-57.33% and 4.19-11.47%, respectively. This indicates that n-butane adsorption capacity could be a function not only of the specific surface area or total pore volume but also of the sub-mesopore volume fraction in the range of 2.0-2.5 nm of adsorbents. The ACF exhibit enhanced BWC, and especially adsorption velocity, compared to commercial products (granules and pellets), with lower concentrations of n-butane due to a uniformly well-developed pore structure open directly to the outer surface.

7.
J Environ Manage ; 247: 816-821, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31299557

ABSTRACT

In this work, we report a fast recycling process for carbon fiber-reinforced thermosetting resin matrix composites, to obtain recycled carbon fibers. Steam (H2O) was selected as an oxidant to decompose the resin of the composites. The recycling reaction temperature and time were set in the range of 600-800 °C and 60 min, respectively. The recovery yield, surface morphologies, and mechanical properties including tensile strength and modulus of the recovered fibers were measured to evaluate the recycling efficiency. Microstructural properties of the recycled fiber were observed by X-ray studies, and the correlation of mechanical properties of the fibers with crystallite size and distribution was also evaluated. In conclusion, the carbon fibers were successfully recycled, while retaining 65% and 100% of the fibers' original tensile strength and modulus, respectively. 100% recovery yield was achieved in 60 min of decomposition time and 140 min of total process time.


Subject(s)
Carbon Fiber , Carbon , Recycling , Temperature , Tensile Strength
8.
Nanomaterials (Basel) ; 9(6)2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31248161

ABSTRACT

In this study, low-density polyethylene (LDPE)-derived activated carbons (PE-AC) were prepared as electrode materials for an electric double-layer capacitor (EDLC) by techniques of cross-linking, carbonization, and subsequent activation under various conditions. The surface morphologies and structural characteristics of the PE-AC were observed by field-emission scanning electron microscope, Cs-corrected field-emission transmission electron microscope, and X-ray diffraction analysis, respectively. The nitrogen adsorption isotherm-desorption characteristics were confirmed by Brunauer-Emmett-Teller, nonlocal density functional theory, and Barrett-Joyner-Halenda equations at 77 K. The results showed that the specific surface area and total pore volume of the activated samples increased with increasing the activation time. The specific surface area, the total pore volume, and mesopore volume of the PE-AC were found to be increased finally to 1600 m2/g, 0.86 cm3/g, and 0.3 cm3/g, respectively. The PE-AC also exhibited a high mesopore volume ratio of 35%. This mesopore-rich characteristic of the activated carbon from the LDPE is considered to be originated from the cross-linking density and crystallinity of precursor polymer. The high specific surface area and mesopore volume of the PE-AC led to their excellent performance as EDLC electrodes, including a specific capacitance of 112 F/g.

9.
Nanomaterials (Basel) ; 9(4)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013823

ABSTRACT

In this study, activated polymer-based hard carbon using steam activation (APHS) with mesopore-rich pore structures were prepared for application as electrodes in electrical double-layer capacitors (EDLC). The surface morphologies and structural characteristics of APHS were observed using scanning electron microscopy and X-ray diffraction analysis, respectively. The textural properties were described using Brunauer-Emmett-Teller and Barrett-Joyner-Halenda equations with N2/77 K adsorption isotherms. APHS were prepared under various steam activation conditions to find optimal ones, which were then applied as electrode materials for the EDLC. The observed specific surface areas and total pore volumes of the APHS were in the range 1170-2410 m2/g and 0.48-1.22 cm3/g, respectively. It was observed that pore size distribution mainly depended on the activation time and temperature, and that the volume of pores with size of 1.5-2.5 nm was found to be a key factor determining the electrochemical capacity.

10.
Nanomaterials (Basel) ; 10(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31888026

ABSTRACT

In this study, a plasma in a liquid process (PiLP) was used to facilely precipitate bimetallic nanoparticles composed of Ni and Co elements on the surface of activated carbon. The physicochemical and electrochemical properties of the fabricated composites were evaluated to examine the potential of supercapacitors as electrode materials. Nickel and cobalt ions in the aqueous reactant solution were uniformly precipitated on the AC surface as spherical nanoparticles with a size of about 100 nm by PiLP reaction. The composition of nanoparticles was determined by the molar ratio of nickel and cobalt precursors and precipitated in the form of bimetallic oxide. The electrical conductivity and specific capacitance were increased by Ni-Co bimetallic oxide nanoparticles precipitated on the AC surface. In addition, the electrochemical performance was improved by stable cycling stability and resistance reduction and showed the best performance when the molar ratios of Ni and Co precursors were the same.

11.
J Nanosci Nanotechnol ; 19(4): 2362-2365, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30487000

ABSTRACT

The Fe-Ni oxide bimetallic nanoparticles (FNOBNPs) were synthesized in the liquid phase plasma (LPP) method employed an iron chloride and nickel chloride as metal precursors. The sphericalshaped FNOBNPs were synthesized by the LPP process and, the size of particles was growing along with the progression of LPP reaction. The synthesized FNOBNPs were comprised of Fe3O4 and NiO. Iron had a higher reduction potential than nickel and resulted in higher iron composition in the synthesized FNOBNPs. The control of molar ratio of metal precursors in initial reactant solution was found that it could be employed as a means to control the composition of the elements in FNOBNP.

12.
J Nanosci Nanotechnol ; 19(2): 1078-1081, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30360205

ABSTRACT

Chromium oxide/carbon nanocomposites (COCNC) were synthesized by using a liquid phase plasma process, and the electrical properties of the supercapacitor electrode were investigated. Spherical chromium oxide (Cr2O3) nanoparticles with the size of 100-150 nm were dispersed uniformly on activated carbon powder surface. The quantity of chromium oxide nanoparticle precipitate increased with increasing LPP reaction time and the specific capacitance of COCNC increased with increasing LPP reaction time.

13.
J Environ Manage ; 203(Pt 3): 872-879, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28506669

ABSTRACT

In order to manufacture high quality recycled carbon fibers (R-CFs), carbon fiber-reinforced composite wastes were pyrolysed with super-heated steam at 550 °C in a fixed bed reactor for varying reaction times. The mechanical and surface properties of the R-CFs were characterized with a single fiber tensile test, interface shear strength (IFSS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The surface analysis showed that there was no matrix char residue on the fiber surfaces. The tensile strength and IFSS values of the R-CFs were 90% and 115% compared to those of virgin carbon fibers (V-CFs), respectively. The recycling efficiency of the R-CFs from the composites were strongly dependent on the pyrolysis temperature, reaction time, and super-heated steam feeding rate.


Subject(s)
Carbon , Recycling , Carbon Fiber , Hot Temperature , Photoelectron Spectroscopy , Steam , Surface Properties , Temperature , Tensile Strength
14.
J Nanosci Nanotechnol ; 17(4): 2578-581, 2017 Apr.
Article in English | MEDLINE | ID: mdl-29658690

ABSTRACT

Tin oxide/carbon nanocomposite (TOCNC) was synthesized using a liquid phase plasma method, to be used as the electrode of supercapacitor. Spherical tin oxide amorphous nanoparticles with the size of 5 nm were dispersed uniformly on activated carbon powder (ACP) surface. The quantity of tin oxide nanoparticle precipitate increased with increasing LPP duration and the specific capacitance of TOCNC increased with increasing LPP duration. The TOCNC prepared through the LPP process showed smaller resistances and larger initial resistance slopes than bare ACP and this effect was intensified by increasing the LPP process duration.

15.
J Nanosci Nanotechnol ; 15(11): 8797-802, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26726596

ABSTRACT

The present study developed electrode materials for supercapacitors by activating coke-based activated carbons with CO2. For the activation reaction, after setting the temperature at 1,000 degrees C, four types of activated carbons were produced, over an activation time of 0-90 minutes and with an interval of 30 minutes as the unit. The electrochemical performance of the activated carbons produced was evaluated to examine the effect of CO2 activation. The surface structure of the porous carbons activated through CO2 activation was observed using a scanning electron microscope (SEM). To determine the N2/77 K isothermal adsorption characteristics, the Brunauer-Emmett-Teller (BET) equation and the Barrett-Joyner-Halenda (BJH) equation were used to analyze the pore characteristics. In addition, charge and discharge tests and cyclic voltammetry (CV) were used to analyze the electrochemical characteristics of the changed pore structure. According to the results of the experiments, the N2 adsorption isotherm curves of the porous carbons produced belonged to Type IV in the International Union of Pore and Applied Chemistry (IUPAC) classification and consisted of micropores and mesopores, and, as the activation of CO2 progressed, micropores decreased and mesopores developed. The specific surface area of the porous carbons activated by CO2 was 1,090-1,180 m2/g and thus showed little change, but those of mesopores were 0.43-0.85 cm3/g, thus increasing considerably. In addition, when the electrochemical characteristics were analyzed, the specific capacity was confirmed to have increased from 13.9 F/g to 18.3 F/g. From these results, the pore characteristics of coke-based activated carbons changed considerably because of CO2 activation, and it was therefore possible to increase the electrochemical characteristics.

16.
Small ; 10(16): 3283-90, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-24838196

ABSTRACT

Evidence is presented in this paper that certain single-wall carbon nanotubes are not seamless tubes, but rather adopt a graphene helix resulting from the spiral growth of a nano-graphene ribbon. The residual traces of the helices are confirmed by high-resolution transmission electron microscopy and atomic force microscopy. The analysis also shows that the tubular graphene material may exhibit a unique armchair structure and the chirality is not a necessary condition for the growth of carbon nanotubes. The description of the structure of the helical carbon nanomaterials is generalized using the plane indices of hexagonal space groups instead of using chiral vectors. It is also proposed that the growth model, via a graphene helix, results in a ubiquitous structure of single-wall carbon nanotubes.

17.
J Nanosci Nanotechnol ; 14(12): 9097-102, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25971017

ABSTRACT

In this work, oxyfluorination treatments on carbon fiber surfaces were carried out to improve the interfacial adhesion between carbon fibers and polarized-polypropylene (P-PP). The surface properties of oxyfluorinated carbon fibers were characterized using a single fiber contact angle, and X-ray photoelectron spectroscopy. The mechanical properties of the composites were calculated in terms of work of adhesion between fibers and matrices and also measured by a critical stress intensity factor (K(IC)). The K(IC) of oxyfluorinated carbon fibers-reinforced composites showed higher values than those of as-received carbon fibers-reinforced composites. The results showed that the adhesion strength between the carbon fibers and P-PP had significantly increased after the oxyfluorination treatments. As the theoretical and practical comparisons, OF-CF-60s showed the best mechanical interfacial performance due to the good surface free energy. This indicates that oxyfluorination produced highly polar functional groups on the fiber surface, resulting in strong adhesion between carbon fibers and P-PP in this composite system.

18.
J Nanosci Nanotechnol ; 12(7): 5713-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22966640

ABSTRACT

This study examined the effects of the mechanical milling conditions on the hydrogen adsorption behaviors of graphite flakes under different gas streams. A ball mill technique with various gas streams during treatments was used to introduce oxygen-containing functional groups on the graphite surfaces. The structural properties of graphite were evaluated by XRD, and the surface properties and textural properties were observed SEM, FT-IR, XPS and N2/77 K adsorption isotherms. The hydrogen adsorption behavior of the graphite flakes were evaluated using a volumetric method at room temperature and 100 atm. The mechanically-milled graphite flakes under an oxygen stream showed a higher concentration of oxygen functional groups and greater hydrogen adsorption capacity than that of graphite flakes under an argon stream. This suggests that oxygen functional groups have good chemical affinity with hydrogen molecules in this system.

19.
Int J Mol Sci ; 12(5): 2946-57, 2011.
Article in English | MEDLINE | ID: mdl-21686160

ABSTRACT

D-(+)-Galactose-conjugated single-walled carbon nanotubes (SWCNTs) were synthesized for use as biosensors to detect the cancer marker galectin-3. To investigate the binding of galectin-3 to the d-(+)-galactose-conjugated SWCNTs, an electrochemical biosensor was fabricated by using molybdenum electrodes. The binding affinities of the conjugated SWCNTs to galectin-3 were quantified using electrochemical sensitivity measurements based on the differences in resistance together with typical I-V characterization. The electrochemical sensitivity measurements of the d-(+)-galactose-conjugated SWCNTs differed significantly between the samples with and without galectin-3. This indicates that d-(+)-galactose-conjugated SWCNTs are potentially useful electrochemical biosensors for the detection of cancer marker galectin-3.


Subject(s)
Biomarkers, Tumor/analysis , Biosensing Techniques , Galactose/chemistry , Galectin 3/analysis , Nanotubes, Carbon/chemistry , Electrochemical Techniques , Sensitivity and Specificity
20.
J Nanosci Nanotechnol ; 11(1): 860-4, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21446562

ABSTRACT

In this work, Porous Carbons (PCs) were prepared by using a chemical acid treatment, and the hydrogen storage behaviors of PCs doped by Pt nanoparticles were investigated. The hydrogen storage capacities of the Pt-doped carbons with a platinum content of 0.2-1.5 wt% were evaluated by a volumetric adsorption method at 298 K and 10 MPa. The microstructures of samples were examined by XRD and SEM. It was found that the hydrogen storage capacities of the PCs dramatically increased, but the amount of hydrogen stored from the samples began to decrease after 0.6 wt% of Pt content due to the pore blocking. These results indicate that a suitable amount of supported catalysts and layer intervals of carbons had a very important impact on hydrogen storage behaviors.

SELECTION OF CITATIONS
SEARCH DETAIL
...