Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 279(3): 1819-26, 2004 Jan 16.
Article in English | MEDLINE | ID: mdl-14594947

ABSTRACT

Reconstituted actin filament networks have been used extensively to understand the mechanics of the actin cortex and decipher the role of actin cross-linking proteins in the maintenance and deformation of cell shape. However, studies of the mechanical role of the F-actin cross-linking protein filamin have led to seemingly contradictory conclusions, in part due to the use of ill-defined mechanical assays. Using quantitative rheological methods that avoid the pitfalls of previous studies, we systematically tested the complex mechanical response of reconstituted actin filament networks containing a wide range of filamin concentrations and compared the mechanical function of filamin with that of the cross-linking/bundling proteins alpha-actinin and fascin. At steady state and within a well defined linear regime of small non-destructive deformations, F-actin solutions behave as highly dynamic networks (actin polymers are still sufficiently mobile to relax the stress) below the cross-linking-to-bundling threshold filamin concentration, and they behave as covalently cross-linked gels above that threshold. Under large deformations, F-actin networks soften at low filamin concentrations and strain-harden at high filamin concentrations. Filamin cross-links F-actin into networks that are more resilient, stiffer, more solid-like, and less dynamic than alpha-actinin and fascin. These results resolve the controversy by showing that F-actin/filamin networks can adopt diametrically opposed rheological behaviors depending on the concentration in cross-linking proteins.


Subject(s)
Actins/chemistry , Contractile Proteins/physiology , Microfilament Proteins/physiology , Actinin/chemistry , Animals , Carrier Proteins/chemistry , Chickens , Filamins , Gels , Microfilament Proteins/chemistry
2.
J Biol Chem ; 277(20): 18143-50, 2002 May 17.
Article in English | MEDLINE | ID: mdl-11889122

ABSTRACT

Rapid sol-gel transitions of the actin cytoskeleton are required for many key cellular processes, including cell spreading and cell locomotion. Actin monomers assemble into semiflexible polymers that rapidly intertwine into a network, a process that in vitro takes approximately 1 min for an actin concentration of 1 mg/ml. The same actin filament network, however, takes approximately 1 h to exhibit a steady-state elasticity. We hypothesize that the slow gelation of F-actin is due to the slow establishment of a homogeneous meshwork. Using a novel method, time-resolved multiple particle tracking, which monitors the range of thermally excited displacements of microspheres imbedded in the network, we show that the increase in elasticity in a polymerizing solution of actin parallels the progressive decline of the network microheterogeneity. The rates of gelation and network homogenization slightly decrease with actin concentration and in the presence of the F-actin cross-linking proteins alpha-actinin and fascin, whereas the rate of actin polymerization increases dramatically with actin concentration. Our measurements show that the slow spatial homogenization of the actin filament network, not actin polymerization or the formation of polymer overlaps, is the rate-limiting step in the establishment of an elastic actin network and suggest that a new activity of F-actin binding proteins may be required for the rapid formation of a homogeneous stiff gel.


Subject(s)
Actin Cytoskeleton/ultrastructure , Animals , Chickens , Microscopy, Electron , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...