Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 3471, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38342945

ABSTRACT

We observed the frequency pushing of the cavity resonance as a result of the coupling of the cavity field with the ground state 138Ba in a high-Q cavity. A weak probe laser propagated along the axis of a Fabry-Pérot cavity while ground-state barium atoms traversed the cavity mode perpendicularly. By operating the atom-cavity composite in the vicinity of an exceptional point, we could observe a greatly enhanced frequency shift of the cavity transmission peak, which was pushed away from the atomic resonance, resulting in up to 41 ± 7 kHz frequency shift per atom from the empty cavity resonance. We analyzed our results by using the Maxwell-Schrödinger equation and obtained good agreement with the measurements.

2.
Sci Rep ; 12(1): 9798, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35697733

ABSTRACT

The illumination problem in mathematics questions the existence of a bounded region in which light rays from a point light source do not illuminate the whole region. Since Penrose disproved the illumination problem with elliptical reflective boundaries, the interest has mostly remained in ray optics mainly because there can be no completely dark region for light waves due to diffraction. Here, in a two-dimensional Penrose cavity with elliptical boundaries, we report experimental observation of a symmetry-broken mode in the long-wavelength regime with the half of the cavity region with reflection symmetry almost unilluminated in the steady state. The half-illuminated mode (HIM) was observed in an acoustic cavity by using the schlieren method. The HIM originated from the coherent superposition of near-degenerate modes, among which two scarred modes with opposite parities played a major role. The illuminated part of the HIM could be even flipped by choosing different coefficients in the coherent superposition of the participating modes. The HIM of the Penrose cavity provides new perspective to the illumination problem in an open system.

3.
Opt Express ; 30(8): 13294-13304, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35472945

ABSTRACT

Measuring the boundary shape of a deformed liquid microjet is of great importance for using it as an optical resonator for various applications. However, there have been technical challenges due to transparency and uncertainty in the refractive index of the liquid. In this study, we have developed a spectroscopic technique that enables simultaneous determination of the boundary shape and the refractive index of a liquid deformed microjet. A detailed procedure of the technique based on imposition of one-to-one correspondence between experimentally observed resonances and numerically calculated ones are presented along with the measurement results including the refractive index of ethanol between a wavelength of 550 nm and 670 nm.

4.
Sensors (Basel) ; 21(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34577462

ABSTRACT

We herein report a simultaneous frequency stabilization of two 780-nm external cavity diode lasers using a precision wavelength meter (WLM). The laser lock performance is characterized by the Allan deviation measurement in which we find σy=10-12 at an averaging time of 1000 s. We also obtain spectral profiles through a heterodyne spectroscopy, identifying the contribution of white and flicker noises to the laser linewidth. The frequency drift of the WLM is measured to be about 2.0(4) MHz over 36 h. Utilizing the two lasers as a cooling and repumping field, we demonstrate a magneto-optical trap of 87Rb atoms near a high-finesse optical cavity. Our laser stabilization technique operates at broad wavelength range without a radio frequency element.

5.
Sci Rep ; 11(1): 11256, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34045596

ABSTRACT

Hyperradiance in which radiation rate exceeds that of superradiance has been theoretically investigated in various coherently-coupled emitter-field systems. In most cases, either proposed setups were experimentally challenging or the mean photon number in a cavity was limited. In this paper, with numerical simulations and analytic calculations, we demonstrate that significant hyperradiance with a large mean photon number can occur in a microlaser system, where pairs of two-level atoms prepared in quantum superposition states traverse a high-Q cavity in the presence of a pump field intersecting the cavity mode. Hyperradiance is induced when the intracavity-pump Rabi frequency is out of phase with respect to the atom-cavity coupling so that the reduction of atomic polarization by the atom-cavity coupling is compensated by the pump Rabi frequency in the steady state to maximize atomic photoemission.

6.
Sci Rep ; 11(1): 6164, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33731783

ABSTRACT

We present a practical laser linewidth broadening phenomenon in the viewpoint of high sensitivity of an exceptional point (EP). A stochastic simulation model is implemented to describe the fluctuations in the cavity resonance frequencies. The linewidth originated from external noises are maximized at the EP. The linewidth enhancement factor behaves similarly to the Petermann factor although the Petermann effect is not considered. In the long coherence time limit, the power spectral density of the laser exhibits a splitting in the vicinity of the EP although the cavity eigenfrequencies coalesce at the EP.

7.
Appl Opt ; 59(27): 8228-8234, 2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32976406

ABSTRACT

We report a schlieren-style stroboscopic phase-contrast field-amplitude imaging of two-dimensional acoustic whispering gallery modes in a circular shell cavity immersed in liquid. A schlieren signal is combined with a presplit reference beam to enable nonscan field-amplitude imaging. Excitation mechanisms of standing and traveling eigenmodes, respectively, are analyzed with acoustic ray simulations presented in a Poincaré surface of sections. The time evolutions for both standing and traveling eigenmodes are reconstructed using the stroboscopic capability.

8.
Sci Rep ; 10(1): 12551, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32724215

ABSTRACT

The Shannon entropy as a measure of information contents is investigated around an exceptional point (EP) in an open elliptical microcavity as a non-Hermitian system. The Shannon entropy is maximized near the EP in the parameter space for two interacting modes, but the exact maximum position is slightly off the EP toward the weak interaction region while the slopes of the Shannon entropies diverge at the EP. The Shannon entropies also show discontinuity across a specific line in the parameter space, directly related to the exchange of the Shannon entropy as well as the mode patterns with that line as a boundary. This feature results in a nontrivial topological structure of the Shannon entropy surfaces.

9.
Sci Rep ; 9(1): 17110, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31745233

ABSTRACT

Sub-Poisson field with much reduced fluctuations in a cavity can boost quantum precision measurements via cavity-enhanced light-matter interactions. Strong coupling between an atom and a cavity mode has been utilized to generate highly sub-Poisson fields. However, a macroscopic number of optical intracavity photons with more than 3 dB variance reduction has not been possible. Here, we report sub-Poisson field lasing in a microlaser operating with hundreds of atoms with well-regulated atom-cavity coupling and interaction time. Its photon-number variance was 4 dB below the standard quantum limit while the intracavity mean photon number scalable up to 600. The highly sub-Poisson photon statistics were not deteriorated by simultaneous interaction of a large number of atoms. Our finding suggests an effective pathway to widely scalable near-Fock-state lasing at the macroscopic scale.

10.
Phys Rev E ; 97(6-1): 062205, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30011575

ABSTRACT

The relation between Shannon entropy and avoided crossings is investigated in dielectric microcavities. The Shannon entropy of the probability density for eigenfunctions in an open elliptic billiard as well as a closed quadrupole billiard increases as the center of the avoided crossing is approached. These results are opposite to those of atomic physics for electrons. It is found that the collective Lamb shift of the open quantum system and the symmetry breaking in the closed chaotic quantum system have equivalent effects on the Shannon entropy.

11.
Science ; 359(6376): 662-666, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29269423

ABSTRACT

Superradiance is a quantum phenomenon emerging in macroscopic systems whereby correlated single atoms cooperatively emit photons. Demonstration of controlled collective atom-field interactions has resulted from the ability to directly imprint correlations with an atomic ensemble. Here we report cavity-mediated coherent single-atom superradiance: Single atoms with predefined correlation traverse a high-quality factor cavity one by one, emitting photons cooperatively with the N atoms that have already gone through the cavity (N represents the number of atoms). Enhanced collective photoemission of N-squared dependence was observed even when the intracavity atom number was less than unity. The correlation among single atoms was achieved by nanometer-precision position control and phase-aligned state manipulation of atoms by using a nanohole-array aperture. Our results demonstrate a platform for phase-controlled atom-field interactions.

12.
Sci Rep ; 6: 38826, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27958315

ABSTRACT

We report observation of an exceptional point in circular shell ultrasonic cavities in both theory and experiment. In our theoretical analysis we first observe two interacting mode groups, fluid- and solid-based modes, in the acoustic cavities and then show the existence of an EP of these mode groups exhibiting a branch-point topological structure of eigenfrequencies around the EP. We then confirm the mode patterns as well as eigenfrequency structure around the EP in experiments employing the schlieren method, thereby demonstrating utility of ultrasound cavities as experimental platform for investigating non-Hermitian physics.

13.
Sci Rep ; 6: 19805, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26803911

ABSTRACT

Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η(2) for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr's hydrodynamic theory.

14.
Sci Rep ; 5: 9010, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25759322

ABSTRACT

Noncircular two-dimensional microcavities support directional output and strong confinement of light, making them suitable for various photonics applications. It is now of primary interest to control the interactions among the cavity modes since novel functionality and enhanced light-matter coupling can be realized through intermode interactions. However, the interaction Hamiltonian induced by cavity deformation is basically unknown, limiting practical utilization of intermode interactions. Here we present the first experimental observation of resonance-assisted tunneling in a deformed two-dimensional microcavity. It is this tunneling mechanism that induces strong inter-mode interactions in mixed phase space as their strength can be directly obtained from a separatrix area in the phase space of intracavity ray dynamics. A selection rule for strong interactions is also found in terms of angular quantum numbers. Our findings, applicable to other physical systems in mixed phase space, make the interaction control more accessible.

15.
Nat Commun ; 5: 3441, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24603683

ABSTRACT

Zero-point electromagnetic fields were first introduced to explain the origin of atomic spontaneous emission. Vacuum fluctuations associated with the zero-point energy in cavities are now utilized in quantum devices such as single-photon sources, quantum memories, switches and network nodes. Here we present three-dimensional (3D) imaging of vacuum fluctuations in a high-Q cavity based on the measurement of position-dependent emission of single atoms. Atomic position localization is achieved by using a nanoscale atomic beam aperture scannable in front of the cavity mode. The 3D structure of the cavity vacuum is reconstructed from the cavity output. The root mean squared amplitude of the vacuum field at the antinode is also measured to be 0.92±0.07 V cm(-1). The present work utilizing a single atom as a probe for sub-wavelength imaging demonstrates the utility of nanometre-scale technology in cavity quantum electrodynamics.


Subject(s)
Algorithms , Imaging, Three-Dimensional/methods , Models, Molecular , Nanostructures/chemistry , Electromagnetic Fields , Fourier Analysis , Nanotechnology/methods , Silicon Compounds/chemistry , Vacuum
16.
Opt Express ; 19(3): 2440-7, 2011 Jan 31.
Article in English | MEDLINE | ID: mdl-21369063

ABSTRACT

We have demonstrated high-speed controlled generation of single photons in a coupled atom-cavity system. A single 85Rb atom, pumped with a nanosecond-pulse laser, generates a single photon into the cavity mode, and the photon is then emitted out the cavity rapidly. By employing cavity parameters for a moderate coupling regime, the single-photon emission process was optimized for both high efficiency and fast bit rates up to 10 MHz. The temporal single-photon wave packet was studied by means of the photon-arrival-time distribution relative to the pump pulse and the efficiency of the single-photon generation was investigated as the pump power. The single-photon nature of the emission was confirmed by the second-order correlation of emitted photons.


Subject(s)
Lasers, Solid-State , Lighting/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Photons
17.
Nano Lett ; 11(2): 729-33, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21194201

ABSTRACT

We have investigated the spectral broadening in the near-resonance fluorescence spectrum of a single rubidium atom trapped in a three-dimensional (3D) optical lattice in a strong Lamb-Dicke regime. Besides the strong Rayleigh peak, the spectrum exhibited weak Stokes and anti-Stokes Raman sidebands. The line width of the Rayleigh peak for low potential depths was well explained by matter-wave tunneling between the first-two lowest vibrational states of 3D anisotropic harmonic potentials of adjacent local minima of the optical lattice.


Subject(s)
Semiconductors , Electron Transport , Equipment Design , Equipment Failure Analysis
18.
Opt Express ; 18(25): 26141-8, 2010 Dec 06.
Article in English | MEDLINE | ID: mdl-21164962

ABSTRACT

We observed resonance effects on the transmission of a pump beam in a chaotic microcavity in an optimal free-space optical-pumping configuration. The far-field pattern of cavity transmission was significantly modified when the pump laser was resonant with a scar mode. From the difference between the non-resonant and on-resonance transmission patterns, we obtained the efficiency of the pump coupling into the scar mode to be as high as 45%, which is consistent with the recent excitation spectroscopy results of Yang et al. [Phys. Rev. Lett. 104, 243601 (2010)].


Subject(s)
Models, Theoretical , Nonlinear Dynamics , Optical Devices , Transducers , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Miniaturization
19.
Phys Rev Lett ; 104(24): 243601, 2010 Jun 18.
Article in English | MEDLINE | ID: mdl-20867300

ABSTRACT

Pump-induced dynamical tunneling has been observed in free-space resonant optical pumping of a deformed microcavity by employing excitation spectroscopy. A focused-pump beam was injected into the cavity by refraction and then coupled to a high-Q cavity mode via dynamical tunneling. Pump-coupling efficiency as high as 50% and an effective coupling constant responsible for the tunneling were obtained from the observed pumping efficiency with a mode-mode coupling model.

20.
Opt Express ; 18(9): 9286-302, 2010 Apr 26.
Article in English | MEDLINE | ID: mdl-20588776

ABSTRACT

Atom-cavity coupling constant is a key parameter in cavity quantum electrodynamics for describing the interaction between an atom and a quantized electromagnetic field in a cavity. This paper reports a novel way to tune the coupling constant continuously by inducing an averaging of the atomic dipole moment over degenerate magnetic sublevels with elliptic polarization of the cavity field. We present an analytic solution of the stationary-state density matrix for this system with consideration of F -> F +1 hyperfine transition under a weak excitation condition. We rigorously show that the stationary-state emission spectra of this system can be approximated by that of a non-degenerate two-level atom with an effective coupling constant as a function of the elliptic angle of the cavity field only. A precise condition for this approximation is derived and its physical meaning is interpreted in terms of a population-averaged transition strength and its variance. Our results can be used to control the coupling constant in cavity quantum electrodynamics experiments with a degenerate two-level atom with magnetic sublevels. Possible applications of our results are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...