Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.093
Filter
1.
Adv Mater ; : e2406682, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837816

ABSTRACT

The utilization of rare earth elements to regulate the interaction between catalysts and oxygen-containing species holds promising prospects in the field of oxygen electrocatalysis. Through structural engineering and adsorption regulation, it is possible to achieve high-performance catalytic sites with a broken activity-stability tradeoff. Herein, we fabricate a hierarchical CeO2/NiCo hydroxide for electrocatalytic oxygen evolution reaction (OER). This material exhibits superior overpotentials and enhanced stability. Multiple potential-dependent experiments reveal that CeO2 promotes oxygen-species exchange, especially OH- ions, between catalyst and environment, thereby optimizing the redox transformation of hydroxide and the adsorption of oxygen-containing intermediates during OER. This is attributed to the reduction in the adsorption energy barrier of Ni to *OH facilitated by CeO2, particularly the near-interfacial Ni sites. The less-damaging adsorbate evolution mechanism and the CeO2 hierarchical shell significantly enhance the structural robustness, leading to exceptional stability. Additionally, the observed "self-healing" phenomenon provides further substantiation for the accelerated oxygen exchange. This work provides a neat strategy for the synthesis of ceria-based complex hollow electrocatalysts, as well as an in-depth insight into the co-catalytic role of CeO2 in terms of oxygen transfer. This article is protected by copyright. All rights reserved.

2.
Biomed Chromatogr ; : e5927, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866427

ABSTRACT

Allergic rhinitis (AR) is a prevalent upper airway chronic inflammatory disease in children worldwide. The role of bioactive lipids in the regulation of AR has been recognized, but the underlying serum lipidomic basis of its pathology remains unclear. We utilized ultra-performance liquid chromatography (UPLC)-Q-Exactive Orbitrap/mass spectrometry (MS) to investigate the serum lipidomic profiles of children with AR. The lipidomic analysis identified 42 lipids that were differentially expressed (p < 0.05, fold change > 2) between the AR (n = 75) and normal control groups (n = 44). Specifically, the serum levels of diacylglycerol (DG), triacylglycerol (TG), fatty acid (FA), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine, phosphatidyl-ethanolamine, and cardiolipins were significantly higher in the AR group. The diagnostic potential of the identified lipids was further evaluated using receiver operating characteristic curve analysis. The analysis revealed that five lipids, including FA 30:7, LPC O-18:1, LPC 18:0, LPC 16:0, and DG 34:0, had area under the curve values greater than 0.9 (p < 0.05). Furthermore, serum levels of IgE and IL-33, markers of AR severity, were found to have a significant positive correlation (p < 0.05) with DGs, LPCs, TGs, and FAs in AR patients. This study revealed the lipid disorders associated with AR and its severity, providing new insights into the pathological process of AR.

3.
ArXiv ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38855537

ABSTRACT

Backpropagation (BP), a foundational algorithm for training artificial neural networks, predominates in contemporary deep learning. Although highly successful, it is often considered biologically implausible. A significant limitation arises from the need for precise symmetry between connections in the backward and forward pathways to backpropagate gradient signals accurately, which is not observed in biological brains. Researchers have proposed several algorithms to alleviate this symmetry constraint, such as feedback alignment and direct feedback alignment. However, their divergence from backpropagation dynamics presents challenges, particularly in deeper networks and convolutional layers. Here we introduce the Product Feedback Alignment (PFA) algorithm. Our findings demonstrate that PFA closely approximates BP and achieves comparable performance in deep convolutional networks while avoiding explicit weight symmetry. Our results offer a novel solution to the longstanding weight symmetry problem, leading to more biologically plausible learning in deep convolutional networks compared to earlier methods.

4.
BMC Anesthesiol ; 24(1): 195, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822249

ABSTRACT

BACKGROUND: Propofol is effective and used as a kind of routine anesthetics in procedure sedative anesthesia (PSA) for ureteroscopy. However, respiratory depression and unconscious physical activity always occur during propofol-based PSA, especially in elderly patients. Esketamine has sedative and analgesic effects but without risk of cardiorespiratory depression. The purpose of this study is to investigate whether esketamine can reduce the propofol median effective dose (ED50) for successful ureteroscope insertion in elderly male patients. MATERIALS AND METHODS: 49 elderly male patients undergoing elective rigid ureteroscopy were randomly divided into two groups: SK Group (0.25 mg/kg esketamine+propofol) and SF Group (0.1 µg/kg sufentanil+propofol). Patients in both two groups received propofol with initial bolus dose of 1.5 mg/kg after sufentanil or esketamine was administered intravenously. The effective dose of propofol was assessed by a modified Dixon's up-and-down method and then was adjusted with 0.1 mg/kg according to the previous patient response. Patients' response to ureteroscope insertion was classified as "movement" or "no movement". The primary outcome was the ED50 of propofol for successful ureteroscope insertion with esketamine or sufentanil. The secondary outcomes were the induction time, adverse events such as hemodynamic changes, hypoxemia and body movement were also measured. RESULT: 49 patients were enrolled and completed this study. The ED50 of propofol for successful ureteroscope insertion in SK Group was 1.356 ± 0.11 mg/kg, which was decreased compared with that in SF Group, 1.442 ± 0.08 mg/kg (P = 0.003). The induction time in SK Group was significantly shorter than in SF Group (P = 0.001). In SK Group, more stable hemodynamic variables were observed than in SF Group. The incidence of AEs between the two groups was not significantly different. CONCLUSION: The ED50 of propofol with esketamine administration for ureteroscope insertion in elderly male patients is 1.356 ± 0.11 mg/kg, significantly decreased in comparsion with sufentanil. TRIAL REGISTRATION: Chinese Clinical Trial Registry, No: ChiCTR2300077170. Registered on 1 November 2023. Prospective registration. http://www.chictr.org.cn .


Subject(s)
Anesthetics, Intravenous , Ketamine , Propofol , Humans , Male , Propofol/administration & dosage , Propofol/pharmacology , Ketamine/administration & dosage , Aged , Anesthetics, Intravenous/administration & dosage , Anesthetics, Intravenous/pharmacology , Sufentanil/administration & dosage , Ureteroscopy/methods , Dose-Response Relationship, Drug , Ureteroscopes , Drug Interactions , Prospective Studies
5.
Small ; : e2310563, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757918

ABSTRACT

Carbon dots (CDs) have received considerable attention in many application areas owing to their unique optical properties and potential applications; however, the fluorescent mechanism is an obstacle to their applications. Herein, three-color emissive CDs are prepared from single o-phenylenediamine (oPD) by regulating the ratio of ethanol and dimethylformamide (DMF). Fluorescent mechanism of these CDs is proposed as molecular state fluorescence. Reaction intermediates are identified using liquid chromatrography-mass spectroscopy (LC-MS) and 1H nuclear magnetic resonance (NMR) spectra. 1H-Benzo[d]imidazole (BI), 2,3-diaminophenazine (DAP), and 5,14-dihydroquinoxalino[2,3-b] phenazine (DHQP) are proposed to be the fluorophores of blue, green, and red emissive CDs by comparing their optical properties. As per the LC-MS and 1H-NMR analysis, DHQP with red emission tends to form from DAP and oPD in pure ethanol. By adding DMF, BI formation is enhanced and DHQP formation is suppressed. The prepared CDs exhibit green emission with DAP. When the DMF amount is >50%, BI formation is considerably promoted, resulting in DAP formation being suppressed. BI with blue emission then turns into the fluorophore of CDs. This result provides us an improved understanding of the fluorescent mechanism of oPD-based CDs, which guides us in designing the structure and optical properties of CDs.

6.
Australas J Ageing ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741527

ABSTRACT

OBJECTIVE: Previous research has highlighted a heightened occurrence of social isolation and loneliness in older adults diagnosed with chronic lung diseases. Nevertheless, there exists a dearth of studies that have explored the influence of impoverished social relationships on lung function. This study aimed to examine the longitudinal association between social isolation, loneliness and lung function over 4 years among middle-aged and older Chinese adults. METHODS: This study employed two waves (2011 and 2015) of data from the China Health and Retirement Longitudinal Study (CHARLS). The analysis was limited to participants aged 45 years and above and stratified based on gender (3325 men and 3794 women). The measurement of peak expiratory flow (PEF) served as an indicator for assessing lung function. Lagged dependent variable regression models, accounting for covariates, were employed to explore the relationship between baseline social isolation and loneliness and the subsequent PEF. RESULTS: For women, social isolation was significantly associated with the decline in PEF at follow-up (ß = -.06, p < .001) even after adjusting for all covariates; no significant correlation was observed between loneliness and PEF. Among men, there was no significant association found between either social isolation or loneliness and PEF. CONCLUSIONS: Social isolation is prospectively associated with worse lung function in middle-aged and older Chinese women but not men. The results highlight the importance of promoting social relationships in public health initiatives, especially in groups that are more vulnerable.

7.
J Mol Cell Cardiol ; 193: 1-10, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38789075

ABSTRACT

BACKGROUND: Hypothermic ischemia-reperfusion arrhythmia is a common complication of cardiothoracic surgery under cardiopulmonary bypass, but few studies have focused on this type of arrhythmia. Our prior study discovered reduced myocardial Cx43 protein levels may be linked to hypothermic reperfusion arrhythmias. However, more detailed molecular mechanism research is required. METHOD: The microRNA and mRNA expression levels in myocardial tissues were detected by real-time quantitative PCR (RT-qPCR). Besides, the occurrence of hypothermic reperfusion arrhythmias and changes in myocardial electrical conduction were assessed by electrocardiography and ventricular epicardial activation mapping. Furthermore, bioinformatics analysis, applying antagonists of miRNA, western blotting, immunohistochemistry, a dual luciferase assay, and pearson correlation analysis were performed to investigate the underlying molecular mechanisms. RESULTS: The expression level of novel-miR-17 was up-regulated in hypothermic ischemia-reperfusion myocardial tissues. Inhibition of novel-miR-17 upregulation ameliorated cardiomyocyte edema, reduced apoptosis, increased myocardial electrical conduction velocity, and shortened the duration of reperfusion arrhythmias. Mechanistic studies showed that novel-miR-17 reduced the expression of Cx43 by directly targeting Gja1 while mediating the activation of the PKC/c-Jun signaling pathway. CONCLUSION: Up-regulated novel-miR-17 is a newly discovered pro-arrhythmic microRNA that may serve as a potential therapeutic target and biomarker for hypothermic reperfusion arrhythmias.

8.
Phytomedicine ; 130: 155761, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38797031

ABSTRACT

BACKGROUND: Quercetin has received extensive attention for its therapeutic potential treating respiratory syncytial virus (RSV) infection diseases. Recent studies have highlighted quercetin's ability of suppressing alveolar macrophages (AMs)-derived lung inflammation. However, the anti-inflammatory mechanism of quercetin against RSV infection still remains elusive. PURPOSE: This study aims to elucidate the mechanism about quercetin anti-inflammatory effect on RSV infection. METHODS: BALB/c mice were intranasally infected with RSV and received quercetin (30, 60, 120 mg/kg/d) orally for 3 days. Additionally, an in vitro infection model utilizing mouse alveolar macrophages (MH-S cells) was employed to validate the proposed mechanism. RESULTS: Quercetin exhibited a downregulatory effect on glycolysis and tricarboxylic acid (TCA) cycle metabolism in RSV-infected AMs. However, it increased itaconic acid production, a metabolite derived from citrate through activating immune responsive gene 1 (IRG1), and further inhibiting succinate dehydrogenase (SDH) activity. While the suppression of SDH activity orchestrated a cascading downregulation of Hif-1α/NLRP3 signaling, ultimately causing AMs polarization from M1 to M2 phenotypes. CONCLUSION: Our study demonstrated quercetin stimulated IRG1-mediated itaconic acid anabolism and further inhibited SDH/Hif-1α/NLRP3 signaling pathway, which led to M1 to M2 polarization of AMs so as to ameliorate RSV-induced lung inflammation.

9.
MethodsX ; 12: 102672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38707217

ABSTRACT

This research presents the methods that are used to examine the dynamics and potential spillover effects of various global environmental conservation programs. We specifically show the data and models that we use to analyze the interactions and mutual influences between the U.S.'s Conservation Reserve Program (CRP) and Environmental Quality Incentives Program (EQIP), as well as those between China's Grain-to-Green Program (GTGP) and Forest Ecological Benefit Compensation (FEBC). Additionally, this study illustrates information about global initiatives, their interconnected impacts, and the associated policy strategies for environmental conservation. By utilizing multivariate regression, logistic regression, eigenvector spatial filtering, and scenario modeling, the research aims to understand the collective influence of these initiatives on broader environmental objectives. The findings of this study provide valuable insights for improving conservation policy designs and effectiveness.•Multivariate and logistic regression analyses to dissect global environmental conservation program interactions and mutual influences.•Eigenvector spatial filtering to address spatial autocorrelation and enhance the accuracy of the model results and our interpretations.•Scenario modeling to project potential future outcomes and impacts.

10.
Article in English | MEDLINE | ID: mdl-38696081

ABSTRACT

Ischemic heart disease is caused by coronary artery occlusion. Despite the increasing number and success of interventions for restoring coronary artery perfusion, myocardial ischemia-reperfusion (I/R) injury remains a significant cause of morbidity and mortality worldwide. Inspired by the impact of I/R on the Cx43 trafficking to the intercalated discs (ICDs), we aim to explore the potential mechanisms underlying the downregulation of Cx43 in ICDs after myocardial I/R. Gene set enrichment analysis (GSEA), Western blotting, and immunofluorescence experiments showed that Myocardial I/R activated the P38MAPK signaling pathway and promoted microtubule depolymerization. Inhibition of P38MAPK signaling pathway activation attenuated I/R-induced microtubule depolymerization. The ability of SB203580 to recover the distribution of Cx43 and electrophysiological parameters in I/R myocardium depended on microtubule stability. Our study suggests that microtubule depolymerization caused by the activation of the P38MAPK signaling pathway is an important mechanism underlying the downregulation of Cx43 in ICDs after myocardial I/R.

11.
Article in English | MEDLINE | ID: mdl-38772315

ABSTRACT

Owing to population growth and environmental pollution, freshwater aquaculture has been rapidly shrinking in recent years. Aquaculture in saline-alkaline waters is a crucial strategy to meet the increasing demand for aquatic products. The Chinese mitten crab is an important economic food in China, but the molecular mechanism by which it tolerates carbonate alkalinity (CA) in water remains unclear. Here, we found that enzyme activities of the tricarboxylic acid (TCA) cycle in the gills, such as citrate synthase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and malate dehydrogenase, were markedly reduced under CA stress induced by 40 mM NaHCO3. Secondly, the TCA cycle in the gills is inhibited under acute CA stress, according to proteomic and metabolomic analyses. The expressions of six enzymes, namely aconitate hydratase, isocitrate dehydrogenase, 2-oxoglutarate dehydrogenase, dihydrolipoyl dehydrogenase, succinate-CoA ligase, and malate dehydrogenase, were downregulated, resulting in the accumulation of phosphoenolpyruvic acid, citric acid, cis-aconitate, and α-ketoglutaric acid. Finally, we testified that if the TCA cycle is disturbed by malonate, the survival rate increases in CA water. To our knowledge, this is the first study to show that the TCA cycle in the gills is inhibited under CA stress. Overall, the results provide new insights into the molecular mechanism of tolerance to saline-alkaline water in crabs, which helped us expand the area for freshwater aquaculture and comprehensively understand the physiological characteristics of crab migration.


Subject(s)
Brachyura , Carbonates , Citric Acid Cycle , Gills , Stress, Physiological , Animals , Citric Acid Cycle/drug effects , Gills/metabolism , Gills/drug effects , Brachyura/metabolism , Brachyura/physiology , Brachyura/drug effects , Carbonates/pharmacology
12.
Plant Commun ; : 100891, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561965

ABSTRACT

Plants that grow in extreme environments represent unique sources of stress-resistance genes and mechanisms. Ammopiptanthus mongolicus (Leguminosae) is a xerophytic evergreen broadleaf shrub native to semi-arid and desert regions; however, its drought-tolerance mechanisms remain poorly understood. Here, we report the assembly of a reference-grade genome for A. mongolicus, describe its evolutionary history within the legume family, and examine its drought-tolerance mechanisms. The assembled genome is 843.07 Mb in length, with 98.7% of the sequences successfully anchored to the nine chromosomes of A. mongolicus. The genome is predicted to contain 47 611 protein-coding genes, and 70.71% of the genome is composed of repetitive sequences; these are dominated by transposable elements, particularly long-terminal-repeat retrotransposons. Evolutionary analyses revealed two whole-genome duplication (WGD) events at 130 and 58 million years ago (mya) that are shared by the genus Ammopiptanthus and other legumes, but no species-specific WGDs were found within this genus. Ancestral genome reconstruction revealed that the A. mongolicus genome has undergone fewer rearrangements than other genomes in the legume family, confirming its status as a "relict plant". Transcriptomic analyses demonstrated that genes involved in cuticular wax biosynthesis and transport are highly expressed, both under normal conditions and in response to polyethylene glycol-induced dehydration. Significant induction of genes related to ethylene biosynthesis and signaling was also observed in leaves under dehydration stress, suggesting that enhanced ethylene response and formation of thick waxy cuticles are two major mechanisms of drought tolerance in A. mongolicus. Ectopic expression of AmERF2, an ethylene response factor unique to A. mongolicus, can markedly increase the drought tolerance of transgenic Arabidopsis thaliana plants, demonstrating the potential for application of A. mongolicus genes in crop improvement.

13.
Heart Rhythm ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38614190

ABSTRACT

BACKGROUND: Exercise intolerance is a common symptom associated with atrial fibrillation (AF). However, echocardiographic markers that can predict impaired exercise capacity are lacking. OBJECTIVE: This study aimed to investigate the association between echocardiographic parameters and exercise capacity assessed by cardiopulmonary exercise testing in patients with AF. METHODS: This single-center prospective study enrolled patients with AF who underwent echocardiography and cardiopulmonary exercise testing to evaluate exercise capacity at a tertiary center for AF management from 2020 to 2022. Patients with valvular heart disease, reduced left ventricular ejection fraction, or documented cardiomyopathy were excluded. RESULTS: Of the 188 patients, 134 (71.2%) exhibited impaired exercise capacity (peak oxygen consumption ≤85%), including 4 (2.1%) having poor exercise capacity (peak oxygen consumption <50%). Echocardiographic findings revealed that these patients had an enlarged left atrial end-systolic diameter (LA); smaller left ventricular end-diastolic diameter (LVEDD); and increased relative wall thickness, tricuspid regurgitation velocity, and LA/LVEDD and E/e' ratios. In addition, they exhibited lower peak systolic velocity of the mitral annulus and LA reservoir strain. In the multivariate regression model, LA/LVEDD remained the only significant echocardiographic parameter after adjustment for age, sex, and body mass index (P = .020). This significance persisted even after incorporation of heart rate reserve, N-terminal pro-B-type natriuretic peptide level, and beta-blocker use into the model. CONCLUSION: In patients with AF, LA/LVEDD is strongly associated with exercise capacity. Further follow-up and validation are necessary to clarify its clinical implications in patient care.

16.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473763

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in reduced dopamine levels in the striatum and eventual onset of motor symptoms. Linalool (3,7-dimethyl-1,6-octadien-3-ol) is a monoterpene in aromatic plants exhibiting antioxidant, antidepressant, and anti-anxiety properties. The objective of this study is to evaluate the neuroprotective impacts of linalool on dopaminergic SH-SY5Y cells, primary mesencephalic and cortical neurons treated with 1-methyl-4-phenylpyridinium ion (MPP+), as well as in PD-like mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Cell viability, α-tubulin staining, western blotting, immunohistochemistry and behavioral experiments were performed. In MPP+-treated SH-SY5Y cells, linalool increased cell viability, reduced neurite retraction, enhanced antioxidant defense by downregulation of apoptosis signaling (B-cell lymphoma 2 (Bcl-2), cleaved caspase-3 and poly ADP-ribose polymerase (PARP)) and phagocyte NADPH oxidase (gp91phox), as well as upregulation of neurotrophic signaling (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)) and nuclear factor-erythroid 2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. In MPP+-treated primary mesencephalic neurons, linalool enhanced the expressions of tyrosine hydroxylase (TH), Sirtuin 1 (SirT1), and parkin. In MPP+-treated primary cortical neurons, linalool upregulated protein expression of SirT1, γ-Aminobutyric acid type A-α1 (GABAA-α1), and γ-Aminobutyric acid type B (GABAB). In PD-like mice, linalool attenuated the loss of dopamine neurons in SNpc. Linalool improved the motor and nonmotor behavioral deficits and muscle strength of PD-like mice. These findings suggest that linalool potentially protects dopaminergic neurons and improves the impairment symptoms of PD.


Subject(s)
Acyclic Monoterpenes , Neuroblastoma , Neuroprotective Agents , Parkinson Disease , Humans , Mice , Animals , Parkinson Disease/metabolism , Dopaminergic Neurons/metabolism , Antioxidants/metabolism , Odorants , Sirtuin 1/metabolism , Neuroprotective Agents/pharmacology , Neuroblastoma/metabolism , 1-Methyl-4-phenylpyridinium , Muscle Strength , Models, Theoretical , gamma-Aminobutyric Acid/metabolism
17.
iScience ; 27(4): 109497, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38550983

ABSTRACT

The development of CRISPR-Cas9 technology introduces an efficient tool for precise engineering of fish genomes. With a short reproduction cycle, zebrafish infection mode can be referenced as antiviral breeding researches in aquaculture fish. Previously we identified a crucian carp-specific gene ftrca1 as an inhibitor of interferon response in vitro. Here, we demonstrate that genome editing of zebrafish ftr42, a homolog of ftrca1, generates a zebrafish mutant (ftr42lof/lof) with an improved resistance to SVCV infection. Zebrafish ftr42 acts as a virus-induced E3 ligase and downregulates IFN antiviral response by facilitating TBK1 protein degradation and also IRF7 mRNA decay. Genome editing results in loss of function of zebrafish ftr42, which enables zebrafish to have enhanced interferon response, thus improving zebrafish survival against virus infection. Our results suggest that fine-tuning fish IFN innate immunity through genome editing of negative regulators can genetically improve viral resistance in fish.

18.
J Am Chem Soc ; 146(12): 8668-8676, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38498937

ABSTRACT

Understanding the valency and structural variations of metal centers during reactions is important for mechanistic studies of single-atom catalysis, which could be beneficial for optimizing reactions and designing new protocols. Herein, we precisely developed a single-atom Cu(I)-N4 site catalyst via a photoinduced ligand exchange (PILE) strategy. The low-valent and electron-rich copper species could catalyze hydrophosphinylation via a novel single-electron oxidative addition (OA) pathway under light irradiation, which could considerably decrease the energy barrier compared with the well-known hydrogen atom transfer (HAT) and single electron transfer (SET) processes. The Cu(I)-Cu(II)-Cu(I) catalytic cycle, via single-electron oxidative addition and photoreduction, has been proven by multiple in situ or operando techniques. This catalytic system demonstrates high efficiency and requires room temperature conditions and no additives, which improves the turnover frequency (TOF) to 1507 h-1. In particular, this unique mechanism has broken through the substrate limitation and shows a broad scope for different electronic effects of alkenes and alkynes.

19.
BMC Genomics ; 25(1): 280, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493091

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is a prevalent arrhythmic condition resulting in increased stroke risk and is associated with high mortality. Electrolyte imbalance can increase the risk of AF, where the relationship between AF and serum electrolytes remains unclear. METHODS: A total of 15,792 individuals were included in the observational study, with incident AF ascertainment in the Atherosclerosis Risk in Communities (ARIC) study. The Cox regression models were applied to calculate the hazard ratio (HR) and 95% confidence interval (CI) for AF based on different serum electrolyte levels. Mendelian randomization (MR) analyses were performed to examine the causal association. RESULTS: In observational study, after a median 19.7 years of follow-up, a total of 2551 developed AF. After full adjustment, participants with serum potassium below the 5th percentile had a higher risk of AF relative to participants in the middle quintile. Serum magnesium was also inversely associated with the risk of AF. An increased incidence of AF was identified in individuals with higher serum phosphate percentiles. Serum calcium levels were not related to AF risk. Moreover, MR analysis indicated that genetically predicted serum electrolyte levels were not causally associated with AF risk. The odds ratio for AF were 0.999 for potassium, 1.044 for magnesium, 0.728 for phosphate, and 0.979 for calcium, respectively. CONCLUSIONS: Serum electrolyte disorders such as hypokalemia, hypomagnesemia and hyperphosphatemia were associated with an increased risk of AF and may also serve to be prognostic factors. However, the present study did not support serum electrolytes as causal mediators for AF development.


Subject(s)
Atrial Fibrillation , Humans , Atrial Fibrillation/epidemiology , Atrial Fibrillation/genetics , Risk Factors , Magnesium , Mendelian Randomization Analysis , Calcium , Potassium , Phosphates , Electrolytes , Genome-Wide Association Study/methods
20.
Diabetes Metab Syndr Obes ; 17: 851-856, 2024.
Article in English | MEDLINE | ID: mdl-38410634

ABSTRACT

Background: The impact of inflammatory factors on the risk of diabetic nephropathy (DN) is inconsistent. Two-sample Mendelian randomization (MR) analyses were used to detect the causal role of inflammatory factors in DN risk. Methods: Inflammatory factor GWAS summary data were collected from a meta-analysis including 8,293 Finnish participants, and DN information was extracted from a GWAS of 213,746 individuals from FinnGen. The MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) outlier test was used for the removal of horizontal pleiotropic outliers. Multivariable MR analysis was also used to adjust for pleiotropy. Results: IFN-γ [ORIVW: 1.33; 95% CI: 1.09-1.63; p=0.005] and SCF [ORIVW: 1.25, 1.02-1.52; p = 0.027] were associated with an increased risk of DN. MIP1b [ORIVW: 0.92; 95% CI: 0.85-0.98; p = 0.022] and IL-16 [ORIVW: 0.89, 0.81-0.99; p = 0.043] showed negative associations with the risk of DN. We validated our MR results with MR-PRESSO analyses. Significant horizontal pleiotropy was not found. Moreover, in the multivariable MR analysis, the associations between cytokines and DN risk remained. Conclusion: Our MR results based on genetic data contribute to a better understanding of the pathogenesis of DN and provide evidence for a causal effect of inflammatory factors on DN. These findings support targeting specific inflammatory factors to alleviate DN risk.

SELECTION OF CITATIONS
SEARCH DETAIL
...