Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Small ; : e2403457, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853138

ABSTRACT

A stable stripping/plating process of the zinc anode is extremely critical for the practical application of aqueous zinc metal batteries. However, obstacles, including parasitic reactions and dendrite growth, notoriously deteriorate the stability and reversibility of zinc anode. Herein, Methyl l-α-aspartyl-l-phenylalaninate (Aspartame) is proposed as an effective additive in the ZnSO4 system to realize high stability and reversibility. Aspartame molecule with rich polar functional groups successfully participates in the solvation sheath of Zn2+ to suppress water-induced side reactions. The self-driven adsorption of Aspartame on zinc anode improves uniform deposition with a dose of 10 mm. These synergetic functions endow the zinc anode with a significantly long cycling lifespan of 4500 h. The cell coupled with a vanadium-based cathode also exhibited a high-capacity retention of 71.8% after 1000 cycles, outperforming the additive-free counterparts.

2.
J Am Chem Soc ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767649

ABSTRACT

Heterophase nanomaterials have sparked significant research interest in catalysis due to their distinctive properties arising from synergistic effects of different components and the formed phase boundary. However, challenges persist in the controlled synthesis of heterophase intermetallic compounds (IMCs), primarily due to the lattice mismatch of distinct crystal phases and the difficulty in achieving precise control of the phase transitions. Herein, orthorhombic/cubic Ru2Ge3/RuGe IMCs with engineered boundary architecture are synthesized and anchored on the reduced graphene oxide. The Ru2Ge3/RuGe IMCs exhibit excellent hydrogen evolution reaction (HER) performance with a high current density of 1000 mA cm-2 at a low overpotential of 135 mV. The presence of phase boundaries enhances charge transfer and improves the kinetics of water dissociation while optimizing the processes of hydrogen adsorption/desorption, thus boosting the HER performance. Moreover, an anion exchange membrane electrolyzer is constructed using Ru2Ge3/RuGe as the cathode electrocatalyst, which achieves a current density of 1000 mA cm-2 at a low voltage of 1.73 V, and the activity remains virtually undiminished over 500 h.

3.
Nat Commun ; 15(1): 4587, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811526

ABSTRACT

A comprehensive understanding of the transient characteristics in solid oxide cells (SOCs) is crucial for advancing SOC technology in renewable energy storage and conversion. However, general formulas describing the relationship between SOC transients and multiple parameters remain elusive. Through comprehensive numerical analysis, we find that the thermal and gaseous response times of SOCs upon rapid electrical variations are on the order of two characteristic times (τh and τm), respectively. The gaseous response time is approximately 1τm, and the thermal response time aligns with roughly 2τh. These characteristic times represent the overall heat and mass transfer rates within the cell, and their mathematical relationships with various SOC design and operating parameters are revealed. Validation of τh and τm is achieved through comparison with an in-house experiment and existing literature data, achieving the same order of magnitude for a wide range of electrochemical cells, showcasing their potential use for characterizing transient behaviors in a wide range of electrochemical cells. Moreover, two examples are presented to demonstrate how these characteristic times can streamline SOC design and control without the need for complex numerical simulations, thus offering valuable insights and tools for enhancing the efficiency and durability of electrochemical cells.

4.
Abdom Radiol (NY) ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683216

ABSTRACT

OBJECTIVE: To study the impact of Gx on quantification of hepatic fat contents under metabolic dysfunction-associated steatotic liver disease (MASLD) imaged on VIBE Dixon in hepatobiliary specific phase. METHODS: Forty-two rabbits were randomly divided into control group (n = 10) and high-fat diet group (n = 32). Imaging was performed before enhancement (Pre-Gx) and at the 13th (Post-Gx13) and 17th (Post-Gx17) min after Gx enhancement with 2E- and 6E-VIBE Dixon to determine hepatic proton density fat fractions (PDFF). PDFFs were compared with vacuole percentage (VP) measured under histopathology. RESULTS: 33 animals were evaluated and including control group (n = 11) and MASLD group (n = 22). Pre-Gx, Post-Gx13, Post-Gx17 PDFFs under 6E-VIBE Dixon had strong correlations with VPs (r2 = 0.8208-0.8536). PDFFs under 2E-VIBE Dixon were reduced significantly (P < 0.001) after enhancement (r2 = 0.7991/0.8014) compared with that before enhancement (r2 = 0.7643). There was no significant difference between PDFFs of Post-Gx13 and Post-Gx17 (P = 0.123) for which the highest consistency being found with 6E-VIBE Dixon before enhancement (r2 = 0.8536). The signal intensity of the precontrast compared with the postcontrast, water image under 2E-VIBE Dixon increased significantly (P < 0.001), fat image showed no significant difference (P = 0.754). CONCLUSION: 2E- and 6E-VIBE Dixon can obtain accurate PDFFs in the hepatobiliary specific phase from 13 to 17th min after Gx enhancement. On 2E-VIBE Dixon (FA = 10°), effective minimization of T1 Bias by the Gx administration markedly improved the accuracy of the hepatic PDFF quantification.

5.
J Am Chem Soc ; 146(18): 12556-12564, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38660792

ABSTRACT

Transition metal nitride (TMN)-based nanostructures have emerged as promising materials for diverse applications in electronics, photonics, energy storage, and catalysis due to their highly desirable physicochemical properties. However, synthesizing TMN-based nanostructures with designed compositions and morphologies poses challenges, especially in the solution phase. The cation exchange reaction (CER) stands out as a versatile postsynthetic strategy for preparing nanostructures that are otherwise inaccessible through direct synthesis. Nevertheless, exploration of the CER in TMNs lags behind that in metal chalcogenides and metal phosphides. Here, we demonstrate cation exchange in colloidal metal nitride nanocrystals, employing Cu3N nanocrystals as starting materials to synthesize Ni4N and CoN nanocrystals. By controlling the reaction conditions, Cu3N@Ni4N and Cu3N@CoN core@shell heterostructures with tunable compositions can also be obtained. The Ni4N and CoN nanocrystals are evaluated as catalysts for the electrochemical oxygen evolution reaction (OER). Remarkably, CoN nanocrystals demonstrate superior OER performance with a low overpotential of 286 mV at 10 mA·cm-2, a small Tafel slope of 89 mV·dec-1, and long-term stability. Our CER approach in colloidal TMNs offers a new strategy for preparing other metal nitride nanocrystals and their heterostructures, paving the way for prospective applications.

6.
Small ; : e2401327, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429245

ABSTRACT

Crystal phase engineering has emerged as a powerful tool for tailoring the electrocatalytic performance, yet its impact on nitrate reduction to ammonia (NRA) remains largely uncharted territory. Herein, density functional theory (DFT) calculations are performed to unravel the influence of the crystal phase of FeOOH on the adsorption behavior of *NO3 . Inspiringly, FeOOH samples with four distinct crystal phases (δ, γ, α, and ß) are successfully synthesized and deployed as electrocatalysts for NRA. Remarkably, among all FeOOH samples, δ-FeOOH demonstrates the superior NRA performance, achieving a NH3 Faradic efficiency ( FE NH 3 $\rm{FE} _ {\rm{NH_3}}$ ) of 90.2% at -1.0 V versus reversible hydrogen electrode (RHE) and a NH3 yield rate ( Yield NH 3 $\rm{Yield} _ {\rm{NH_3}}$ ) of 5.73 mg h-1 cm-2 at -1.2 V. In-depth experiments and theoretical calculations unveil the existence of hydrogen bonding interaction between δ-FeOOH and *NOx , which not only enhances the adsorption of *NOx but also disrupts the linear relationships between the free energy of *NO3 adsorption and various parameters, including limiting potential, d-band center (εd ) and transferred charge from FeOOH to *NO3 , ultimately contributing to the exceptional NRA performance.

7.
Mol Biol Rep ; 51(1): 220, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281218

ABSTRACT

D-ribose, an ubiquitous pentose compound found in all living cells, serves as a vital constituent of numerous essential biomolecules, including RNA, nucleotides, and riboflavin. It plays a crucial role in various fundamental life processes. Within the cellular milieu, exogenously supplied D-ribose can undergo phosphorylation to yield ribose-5-phosphate (R-5-P). This R-5-P compound serves a dual purpose: it not only contributes to adenosine triphosphate (ATP) production through the nonoxidative phase of the pentose phosphate pathway (PPP) but also participates in nucleotide synthesis. Consequently, D-ribose is employed both as a therapeutic agent for enhancing cardiac function in heart failure patients and as a remedy for post-exercise fatigue. Nevertheless, recent clinical studies have suggested a potential link between D-ribose metabolic disturbances and type 2 diabetes mellitus (T2DM) along with its associated complications. Additionally, certain in vitro experiments have indicated that exogenous D-ribose exposure could trigger apoptosis in specific cell lines. This article comprehensively reviews the current advancements in D-ribose's digestion, absorption, transmembrane transport, intracellular metabolic pathways, impact on cellular behaviour, and elevated levels in diabetes mellitus. It also identifies areas requiring further investigation.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Metabolic Diseases , Humans , Diabetes Mellitus, Type 2/drug therapy , Ribose/metabolism , Adenosine Triphosphate
8.
World J Surg Oncol ; 22(1): 38, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38287345

ABSTRACT

BACKGROUND: Sarcopenia is associated with poor outcomes in many malignancies. However, the relationship between sarcopenia and the prognosis of pancreatic cancer has not been well understood. The aim of this meta-analysis was to identify the prognostic value of preoperative sarcopenia in patients with pancreatic cancer after curative-intent surgery. METHODS: Database from PubMed, Embase, and Web of Science were searched from its inception to July 2023. The primary outcomes were overall survival (OS), progression-free survival (PFS), and the incidence of major complications. The hazard ratio (HR), odds ratio (OR), and 95% confidence intervals (CIs) were used to assess the relationship between preoperative sarcopenia and the prognosis of patients with pancreatic cancer. All statistical analyses were conducted by Review Manager 5.3 and STATA 17.0 software. RESULTS: A total of 23 retrospective studies involving 5888 patients were included in this meta-analysis. The pooled results demonstrated that sarcopenia was significantly associated with worse OS (HR = 1.53, P < 0.00001) and PFS (HR = 1.55, P < 0.00001). However, this association was not obvious in regard to the incidence of major complications (OR = 1.33, P = 0.11). CONCLUSION: Preoperative sarcopenia was preliminarily proved to be associated with the terrible prognosis of pancreatic cancer after surgery. However, this relationship needs to be further validated in more prospective studies.


Subject(s)
Pancreatic Neoplasms , Sarcopenia , Humans , Sarcopenia/complications , Sarcopenia/diagnosis , Prospective Studies , Retrospective Studies , Prognosis , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/surgery
9.
J Agric Food Chem ; 72(5): 2473-2481, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38284538

ABSTRACT

Bursaphelenchus xylophilus (B. xylophilus) and Meloidogyne are parasitic nematodes that have caused severe ecological and economic damage in pinewood and crops, respectively. Jietacins (jietacin A and B) were found to have excellent biological activity against B. xylophilus. Based on our tremendous demand for chemicals against B. xylophilus, a novel scaffold based on the azo and azoxy groups was designed, and a series of compounds were synthesized. In the bioassay, Ia, IIa, IIc, IId, and IVa exhibited higher activity against B. xylophilus in vitro than avermectin (LC50 = 2.43 µg·mL-1) with LC50 values of 1.37, 1.12, 0.889, 1.56, and 1.10 µg·mL-1, respectively. Meanwhile, Ib, Ic, IIc, and IVa showed good inhibition effects against Meloidogyne in vivo at the concentrations of 80 and 40 µg·mL-1 with inhibition rates of 89.0% and 81.6%, 95.6% and 75.7%, 96.3% and 41.2%, and 86.8% and 78.7%, respectively. In fungicidal activity in vitro, IIb and IVa exhibited excellent effect against Botryosphaeria dothidea with the inhibition of 82.59% and 85.32% at the concentration of 10 µg·mL-1, while the inhibition of Ia was 83.16% against Rhizoctonia solani at the concentration of 12.5 µg·mL-1. Referring to the biological activity against B. xylophilus, a 3D-QASR model was built in which the electron-donating group and small group at the 4-phenylhydrazine were favorable for the activity. In general, the novel azoxy compounds, especially IIc possess great potential for application in the prevention of B. xylophilus.


Subject(s)
Pinus , Tylenchida , Tylenchoidea , Animals , Antinematodal Agents/chemistry , Pinus/parasitology
10.
Ecotoxicol Environ Saf ; 271: 116000, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38266359

ABSTRACT

The decline in male fertility caused by environmental pollutants has attracted worldwide attention nowadays. Tris(2-chloroisopropyl) phosphate (TCPP) is a chlorine-containing organophosphorus flame retardant applied in many consumer products and has multiple side effects on health. However, whether TCPP impairs spermatogenesis remains unclear. In this study, we found that TCPP reduced the sperm motility and blastocyst formation, inhibited proliferation and induced apoptosis in mice testes and spermatocyte cell line GC-2. Moreover, TCPP induced imbalance of oxidant and anti-oxidant, DNA damage and mitochondrial dysfunction, thus induced abnormal spermatogenesis. In this process, p53 signaling pathway was activated and N-acetylcysteine treatment partially alleviated the side effects of TCPP, including decrease of sperm motility, activation of p53 signaling pathway and DNA damage. Finally, our study verified that TCPP elevated reactive oxygen species (ROS), decreased mitochondrial membrane potential and induced apoptosis in human semen samples. Overall, ROS mediated TCPP-induced germ cell proliferation inhibition and apoptosis, which finally led to the decline of sperm motility.


Subject(s)
Flame Retardants , Phosphates , Male , Mice , Humans , Animals , Phosphates/metabolism , Reactive Oxygen Species/metabolism , Organophosphates/toxicity , Acetylcysteine/pharmacology , Acetylcysteine/metabolism , Organophosphorus Compounds , Flame Retardants/toxicity , Sperm Motility , Tumor Suppressor Protein p53/metabolism , Oxidative Stress , DNA Damage
11.
J Acoust Soc Am ; 154(6): 3810-3820, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38109409

ABSTRACT

Wideband sparse spatial spectrum estimation is an important direction-of-arrival (DOA) estimation method that can obtain a high resolution with few snapshots and a low signal-to-noise ratio. However, in an underwater strong interference environment, the accuracy of DOA estimation may be seriously affected, and even the weak targets could be completely masked. In this paper, we propose a fast matrix filter design method based on truncated nuclear norm regularization to attenuate strong interferences while passing weak targets. The matrix filter operator and the exact covariance matrix after filtering can be obtained simultaneously by solving a convex optimization problem that contains the output power term and non-Toeplitz error propagation control term. Then the modified sparse spectrum fitting algorithm based on the matrix filter is used to estimate spatial spectrum over closely spaced wideband signals. Compared with existing methods, the proposed method achieves higher DOA estimation accuracy and lower computational time for matrix filter design. Meanwhile, the estimation accuracy of the proposed method is verified with the experimental results.

12.
Environ Technol ; : 1-22, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37955429

ABSTRACT

The problem of SO2 pollution in industrial flue gas has brought great pressure to environmental governance. In this study, a new type of activated carbon fixed bed device was designed and built for flue gas desulfurization. The results showed that activated carbons (AC1-AC5) were microporous activated carbons with abundant functional groups on the surface, and the desulfurization performance was ranked as AC1 > AC2 > AC3 > AC4 > AC5. The specific surface area of AC1 was as high as 624.98 m2/g, and the maximum adsorption capacity was 29.03 mg·g-1 under the optimum reaction conditions. The Freundlich adsorption isotherm model and Bangham pore diffusion model are more suitable for describing the dynamic adsorption process of SO2 on AC1. Combined with thermodynamic research, it is shown that the adsorption process of SO2 is a spontaneous, exothermic, and chaotic reduction process, which is mainly a physical adsorption between single-layer adsorption and multi-layer adsorption. Finally, the desulfurization-washing regeneration cycle experiment results showed that the regeneration rate of AC1 increases with the washing time and washing temperature, up to 95%, which provides data reference for industrial application.

13.
Nat Commun ; 14(1): 7727, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38001106

ABSTRACT

Understandings of the three-dimensional social behaviors of freely moving large-size mammals are valuable for both agriculture and life science, yet challenging due to occlusions in close interactions. Although existing animal pose estimation methods captured keypoint trajectories, they ignored deformable surfaces which contained geometric information essential for social interaction prediction and for dealing with the occlusions. In this study, we develop a Multi-Animal Mesh Model Alignment (MAMMAL) system based on an articulated surface mesh model. Our self-designed MAMMAL algorithms automatically enable us to align multi-view images into our mesh model and to capture 3D surface motions of multiple animals, which display better performance upon severe occlusions compared to traditional triangulation and allow complex social analysis. By utilizing MAMMAL, we are able to quantitatively analyze the locomotion, postures, animal-scene interactions, social interactions, as well as detailed tail motions of pigs. Furthermore, experiments on mouse and Beagle dogs demonstrate the generalizability of MAMMAL across different environments and mammal species.


Subject(s)
Imaging, Three-Dimensional , Motion Capture , Animals , Swine , Mice , Dogs , Imaging, Three-Dimensional/methods , Posture , Algorithms , Motion , Mammals
14.
iScience ; 26(11): 108127, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37876816

ABSTRACT

Solar-driven thermochemical conversion of H2O and CO2 into sustainable fuels, based on redox cycle, provides a promising path for alternative energy, as it employs the solar energy as high-temperature heat supply and adopts H2O and CO2 as initial feedstock. This review describes the sustainable fuels production system, including a series of physical and chemical processes for converting solar energy into chemical energy in the form of sustainable fuels. Detailed working principles, redox materials, and key devices are reviewed and discussed to provide systematic and in-depth understanding of thermochemical fuels production with the aid of concentrated solar power technology. In addition, limiting factors affecting the solar-to-fuel efficiency are analyzed; meanwhile, the improvement technologies (heat recovery concepts and designs) are summarized. This study therefore sets a pathway for future research works based on the current status and demand for further development of such technologies on a commercial scale.

15.
Medicine (Baltimore) ; 102(42): e35585, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37861478

ABSTRACT

There are few studies on the predictive factors of early recurrence (ER) and late recurrence (LR) of advanced gastric cancer (GC) after curative surgery. Our study aims to explore the independent predictors influencing the prognosis between ER and LR in patients with advanced GC after curative intent surgery respectively. And we will further develop nomograms for prediction of post recurrence survival (PRS). Data of patients with GC who received radical gastrectomy was retrospectively collected. Recurrence was classified into ER and LR according to the 2 years after surgery as the cutoff value. Multivariate Cox regression analyses were used to explore significant predictors in our analysis. Then these significant predictors were integrated to construct nomograms. The 1-, 2- and 3-year probabilities of PRS in patients with ER were 30.00%, 16.36% and 11.82%, respectively. In contrast, the late group were 44.68%, 23.40%, and 23.30%, respectively. Low body mass index (hazard ratio [HR] = 0.86, P = .001), elevated monocytes count (HR = 4.54, P = .003) and neutrophil-lymphocyte ratio (HR = 1.03, P = .037) at the time of recurrence were risk factors of PRS after ER. Decreased hemoglobin (HR = 0.97, P = .008) and elevated neutrophil-lymphocyte ratio (HR = 1.06, P = .045) at the time of recurrence were risk factors of PRS after LR. The calibration curves for probability of 1-, 2-, and 3-year PRS showed excellent predictive effect. Internal validation concordance indexes of PRS were 0.722 and 0.671 for ER and LR respectively. In view of the different predictive factors of ER and LR of GC, the practical predictive model may help clinicians make reasonable decisions.


Subject(s)
Nomograms , Stomach Neoplasms , Humans , Retrospective Studies , Stomach Neoplasms/surgery , Prognosis , Gastrectomy , Neoplasm Recurrence, Local/surgery
16.
IEEE Trans Pattern Anal Mach Intell ; 45(10): 12287-12303, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37126625

ABSTRACT

We present PyMAF-X, a regression-based approach to recovering a parametric full-body model from a single image. This task is very challenging since minor parametric deviation may lead to noticeable misalignment between the estimated mesh and the input image. Moreover, when integrating part-specific estimations into the full-body model, existing solutions tend to either degrade the alignment or produce unnatural wrist poses. To address these issues, we propose a Pyramidal Mesh Alignment Feedback (PyMAF) loop in our regression network for well-aligned human mesh recovery and extend it as PyMAF-X for the recovery of expressive full-body models. The core idea of PyMAF is to leverage a feature pyramid and rectify the predicted parameters explicitly based on the mesh-image alignment status. Specifically, given the currently predicted parameters, mesh-aligned evidence will be extracted from finer-resolution features accordingly and fed back for parameter rectification. To enhance the alignment perception, an auxiliary dense supervision is employed to provide mesh-image correspondence guidance while spatial alignment attention is introduced to enable the awareness of the global contexts for our network. When extending PyMAF for full-body mesh recovery, an adaptive integration strategy is proposed in PyMAF-X to produce natural wrist poses while maintaining the well-aligned performance of the part-specific estimations. The efficacy of our approach is validated on several benchmark datasets for body, hand, face, and full-body mesh recovery, where PyMAF and PyMAF-X effectively improve the mesh-image alignment and achieve new The project page with code and video results can be found at https://www.liuyebin.com/pymaf-x.

17.
Phys Rev E ; 107(3-1): 034312, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37072985

ABSTRACT

We consider growing directed network models that aim at minimizing the weighted connection expenses while at the same time favoring other important network properties such as weighted local node degrees. We employed statistical mechanics methods to study the growth of directed networks under the principle of optimizing some objective function. By mapping the system to an Ising spin model, analytic results are derived for two such models, exhibiting diverse and interesting phase transition behaviors for general edge weight, inward and outward node weight distributions. In addition, the unexplored cases of negative node weights are also investigated. Analytic results for the phase diagrams are derived showing even richer phase transition behavior, such as first-order transition due to symmetry, second-order transitions with possible reentrance, and hybrid phase transitions. We further extend previously developed zero-temperature simulation algorithm for undirected networks to the present directed case and for negative node weights, and we can obtain the minimal cost connection configuration efficiently. All the theoretical results are explicitly verified by simulations. Possible applications and implications are also discussed.

18.
Front Surg ; 10: 1086868, 2023.
Article in English | MEDLINE | ID: mdl-36865630

ABSTRACT

Background: Limited data are available about superior rectal artery (SRA) preservation in laparoscopic resection for sigmoid colon cancer (SCC). This study aimed to evaluate the short-term and long-term efficacies of SRA preservation in laparoscopic radical resection for SCC. Methods: We retrospectively analyzed 207 patients with SCC who underwent laparoscopic radical resection for SCC from January 2017 to June 2021. A total of 84 patients received lymph node clearance around the inferior mesenteric artery (IMA) root (D3 lymph node dissection) with preservation of SRA (SRA preservation group), and 123 patients received high ligation of the IMA (control group). The clinicopathological data of the two groups were compared, and Kaplan-Meier method was performed to estimate patient survival. Results: Compared with the control group, the operation time of the SRA preservation group was longer (p < 0.001), but the postoperative exhaust and defecation times were significantly shorter (p = 0.003, p < 0.001). Two cases of postoperative ileus and four cases of anastomotic leakage were observed in the control group, whereas the SRA preservation group had none. However, no statistical difference was observed between the groups (p = 0.652, p = 0.248). The overall survival also showed no significant difference in (p = 0.436). Conclusion: Preservation of SRA plus dissection of lymph nodes around IMA did not increase postoperative morbidity and mortality nor affect the prognosis of patients but increased the bowel blood supply, which may have a significant positive effect on the recovery of postoperative intestinal function and reduction of anastomotic leakage.

19.
Adv Mater ; 35(40): e2210957, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36869587

ABSTRACT

Freshwater scarcity is a global challenge posing threats to the lives and daily activities of humankind such that two-thirds of the global population currently experience water shortages. Atmospheric water, irrespective of geographical location, is considered as an alternative water source. Sorption-based atmospheric water harvesting (SAWH) has recently emerged as an efficient strategy for decentralized water production. SAWH thus opens up a self-sustaining source of freshwater that can potentially support the global population for various applications. In this review, the state-of-the-art of SAWH, considering its operation principle, thermodynamic analysis, energy assessment, materials, components, different designs, productivity improvement, scale-up, and application for drinking water, is first extensively explored. Thereafter, the practical integration and potential application of SAWH, beyond drinking water, for wide range of utilities in agriculture, fuel/electricity production, thermal management in building services, electronic devices, and textile are comprehensively discussed. The various strategies to reduce human reliance on natural water resources by integrating SAWH into existing technologies, particularly in underdeveloped countries, in order to satisfy the interconnected needs for food, energy, and water are also examined. This study further highlights the urgent need and future research directions to intensify the design and development of hybrid-SAWH systems for sustainability and diverse applications.

20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 406-410, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-36949706

ABSTRACT

Objective: To analyze the residual post-resection electrocorticography (ECoG) status and the related risk factors in patients with medically intractable epilepsy (MIE). Methods: A retrospective analysis was conducted to cover 146 MIE patients who underwent craniotomy for surgical resection in the department of Neurosurgery, Second Affiliated Hospital of Chengdu Medical College between January 2006 and January 2018. The patients were divided into a non-residual group ( n=54) and a residual group ( n=92) according to their ECoG results after the first resection surgery. Then, the 92 patients in the residual group underwent additional palliative surgery and they were further divided into an improvement subgroup ( n=50) and a non-improvement subgroup ( n=42), according to the reevaluation results of improvements in their postoperative ECoG. The differences in the mean annual seizure-free rate among the groups were compared. Univariate and multivariate logistic regression analysis was conducted to analyze the risk factors of residual post-resection ECoG. Results: During the ten-year follow-up after the operation, the mean annual seizure-free rate was 86.7% in the non-residual group and 57.1% in the residual group, showing significant difference between the two groups ( P<0.001). In the subgroups, the mean annual seizure-free rate was 71% in the improvement subgroup and 46.5% in the non-improved subgroup, showing significant difference between the two subgroups ( P=0.003). Logistic regression showed that risk factors associated with residual post-resection ECoG included being female, patient age at the time of surgery being over 18, multi-lobe epilepsy, functional area involvement, and negative MRI findings ( P<0.05). Analysis of the subgroups showed that multi-lobe epilepsy and functional area involvement were risk factors related to not showing improvements in post-resection ECoG ( P<0.05). Conclusions: Findings based on the status of residual post-resection ECoG have shown that patients without residual post-resection ECoG had the best treatment outcomes, and patients who had residual post-resection ECoG, but showed significant improvement after palliative surgery had the second best treatment outcomes. Patients who were female, who had their surgeries when they were older than 18, and who had multi-lobe epilepsy, functional area involvement, or negative MRI results were more likely to have residual post-resection ECoG. Among patients with residual post-resection ECoG, those with multi-lobe epilepsy and functional area involvement showed little improvement in residual post-resection ECoG even after undergoing additional palliative surgery.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Female , Male , Electrocorticography/methods , Drug Resistant Epilepsy/surgery , Retrospective Studies , Epilepsy/surgery , Treatment Outcome , Risk Factors , Electroencephalography
SELECTION OF CITATIONS
SEARCH DETAIL
...