Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
bioRxiv ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38746272

ABSTRACT

The experience of parenthood can profoundly alter one's body, mind, and environment, yet we know little about the long-term associations between parenthood and brain function and aging in adulthood. Here, we investigate the link between number of children parented (parity) and age on brain function in 19,964 females and 17,607 males from the UK Biobank. In both females and males, increased parity was positively associated with functional connectivity, particularly within the somato/motor network. Critically, the spatial topography of parity-linked effects was inversely correlated with the impact of age on functional connectivity across the brain for both females and males, suggesting that a higher number of children is associated with patterns of brain function in the opposite direction to age-related alterations. These results indicate that the changes accompanying parenthood may confer benefits to brain health across the lifespan, highlighting the importance of future work to understand the associated mechanisms.

2.
Proc Natl Acad Sci U S A ; 121(23): e2318641121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814872

ABSTRACT

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.


Subject(s)
Cerebral Cortex , Cognition , Magnetic Resonance Imaging , Humans , Cognition/physiology , Cognition/drug effects , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Male , Magnetic Resonance Imaging/methods , Female , Adolescent , Child , Connectome/methods , Alprazolam/pharmacology , Receptors, GABA-A/metabolism , Young Adult
3.
Plant Physiol Biochem ; 212: 108740, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38797007

ABSTRACT

The metal tolerance protein (MTP) gene family plays an essential role in the transport of heavy metals, however the function of the MTP family in transporting lead (Pb) was still unclear in plants. In this study, we identified and characterized 12 ZmMTPs in the whole genome of maize. These ZmMTP genes were divided into three subfamilies in evolution, namely Zn-CDF, Zn/Fe-CDF, Mn-CDF subfamilies, which showed diverse expression patterns in different tissues of maize. Using gene-based association analyses, we identified a Pb accumulation-related MTP member in maize, ZmMTP11, which was located in plasma membrane and had the potential of transporting Pb ion. Under the Pb treatment, ZmMTP11 showed a generally decreased expression relative to the normal conditions. Heterologous expressions of ZmMTP11 in yeast, Arabidopsis, and rice demonstrated that ZmMTP11 enhanced Pb accumulation in the cells without affecting yeast and plant growth under Pb stress. Remarkably, the increased Pb concentration in the plant roots did not cause changes in Pb content in the shoots. Our study provides new insights into the genetic improvement of heavy metal tolerance in plants and contributes to bioremediation of Pb-contaminant soils.

4.
Clin Transl Med ; 14(4): e1650, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38649772

ABSTRACT

BACKGROUND: Although many molecules have been investigated as biomarkers for spinal cord injury (SCI) or ischemic stroke, none of them are specifically induced in central nervous system (CNS) neurons following injuries with low baseline expression. However, neuronal injury constitutes a major pathology associated with SCI or stroke and strongly correlates with neurological outcomes. Biomarkers characterized by low baseline expression and specific induction in neurons post-injury are likely to better correlate with injury severity and recovery, demonstrating higher sensitivity and specificity for CNS injuries compared to non-neuronal markers or pan-neuronal markers with constitutive expressions. METHODS: In animal studies, young adult wildtype and global Atf3 knockout mice underwent unilateral cervical 5 (C5) SCI or permanent distal middle cerebral artery occlusion (pMCAO). Gene expression was assessed using RNA-sequencing and qRT-PCR, while protein expression was detected through immunostaining. Serum ATF3 levels in animal models and clinical human samples were measured using commercially available enzyme-linked immune-sorbent assay (ELISA) kits. RESULTS: Activating transcription factor 3 (ATF3), a molecular marker for injured dorsal root ganglion sensory neurons in the peripheral nervous system, was not expressed in spinal cord or cortex of naïve mice but was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Additionally, ATF3 protein levels in mouse blood significantly increased 1 day after SCI or ischemic stroke. Importantly, ATF3 protein levels in human serum were elevated in clinical patients within 24 hours after SCI or ischemic stroke. Moreover, Atf3 knockout mice, compared to the wildtype mice, exhibited worse neurological outcomes and larger damage regions after SCI or ischemic stroke, indicating that ATF3 has a neuroprotective function. CONCLUSIONS: ATF3 is an easily measurable, neuron-specific biomarker for clinical SCI and ischemic stroke, with neuroprotective properties. HIGHLIGHTS: ATF3 was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Serum ATF3 protein levels are elevated in clinical patients within 24 hours after SCI or ischemic stroke. ATF3 exhibits neuroprotective properties, as evidenced by the worse neurological outcomes and larger damage regions observed in Atf3 knockout mice compared to wildtype mice following SCI or ischemic stroke.


Subject(s)
Activating Transcription Factor 3 , Biomarkers , Ischemic Stroke , Neurons , Spinal Cord Injuries , Animals , Female , Humans , Male , Mice , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Biomarkers/metabolism , Biomarkers/blood , Disease Models, Animal , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/blood , Mice, Knockout , Neurons/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/complications
5.
bioRxiv ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38586012

ABSTRACT

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here we non-invasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically-plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the GABA-agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 years old) and Asian (7.2 to 7.9 years old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.

6.
Mol Cell Biochem ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553549

ABSTRACT

Proprotein convertase subtilisin/kexin type 5 (PCSK5) is a member of the proprotein convertase (PC) family, which processes immature proteins into functional proteins and plays an important role in the process of cell migration and transformation. Andrographolide is a non-peptide compound with PC inhibition and antitumor activity. Our research aimed to investigate the functional role of PCSK5 downregulation combined with Andro on GBM progression. Results from the cancer genome atlas (TCGA) and clinical samples revealed a significant upregulation of PCSK5 in GBM tissues than in non-tumor brain tissues. Higher expression of PCSK5 was correlated with advanced GBM stages and worse patient prognosis. PCSK5 knockdown attenuated the epithelial-mesenchymal transition (EMT)-like properties of GBM cells induced by IL-6. PCSK5 knockdown in combination with Andro treatment significantly inhibited the proliferation and invasion of GBM cells in vitro, as well as tumor growth in vivo. Mechanistically, PCSK5 downregulation reduced the expression of p-STAT3 and Matrix metalloproteinases (MMPs), which could be rescued by the p-STAT3 agonist. STAT3 silencing downregulated the expression of MMPs without affecting PCSK5. Furthermore, Andro in combination with PCSK5 silencing significantly inhibited STAT3/MMPs axis. These observations provided evidence that PCSK5 functioned as a potential tumor promoter by regulating p-STAT3/MMPs and the combination of Andro with PCSK5 silencing might be a good strategy to prevent GBM progression.

7.
Plant Physiol ; 195(2): 1256-1276, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38391271

ABSTRACT

The Arabidopsis (Arabidopsis thaliana) TRANSPARENT TESTA GLABRA2 (TTG2) gene encodes a WRKY transcription factor that regulates a range of development events like trichome, seed coat, and atrichoblast formation. Loss-of-function of TTG2 was previously shown to reduce or eliminate trichome specification and branching. Here, we report the identification of an allele of TTG2, ttg2-6. In contrast to the ttg2 mutants described before, ttg2-6 displayed unique trichome phenotypes. Some ttg2-6 mutant trichomes were hyper-branched, whereas others were hypo-branched, distorted, or clustered. Further, we found that in addition to specifically activating R3 MYB transcription factor TRIPTYCHON (TRY) to modulate trichome specification, TTG2 also integrated cytoskeletal signaling to regulate trichome morphogenesis. The ttg2-6 trichomes displayed aberrant cortical microtubules (cMTs) and actin filaments (F-actin) configurations. Moreover, genetic and biochemical analyses showed that TTG2 could directly bind to the promoter and regulate the expression of BRICK1 (BRK1), which encodes a subunit of the actin nucleation promoting complex suppressor of cyclic AMP repressor (SCAR)/Wiskott-Aldrich syndrome protein family verprolin homologous protein (WAVE). Collectively, taking advantage of ttg2-6, we uncovered a function for TTG2 in facilitating cMTs and F-actin cytoskeleton-dependent trichome development, providing insight into cellular signaling events downstream of the core transcriptional regulation during trichome development in Arabidopsis.


Subject(s)
Actin Cytoskeleton , Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Transcription Factors , Trichomes , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Trichomes/genetics , Trichomes/growth & development , Trichomes/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Mutation/genetics , Phenotype , Microtubules/metabolism , Cell Shape/genetics , Promoter Regions, Genetic/genetics
8.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38260665

ABSTRACT

Individualized phenotypic prediction based on structural MRI is an important goal in neuroscience. Prediction performance increases with larger samples, but small-scale datasets with fewer than 200 participants are often unavoidable. We have previously proposed a "meta-matching" framework to translate models trained from large datasets to improve the prediction of new unseen phenotypes in small collection efforts. Meta-matching exploits correlations between phenotypes, yielding large improvement over classical machine learning when applied to prediction models using resting-state functional connectivity as input features. Here, we adapt the two best performing meta-matching variants ("meta-matching finetune" and "meta-matching stacking") from our previous study to work with T1-weighted MRI data by changing the base neural network architecture to a 3D convolution neural network. We compare the two meta-matching variants with elastic net and classical transfer learning using the UK Biobank (N = 36,461), Human Connectome Project Young Adults (HCP-YA) dataset (N = 1,017) and HCP-Aging dataset (N = 656). We find that meta-matching outperforms elastic net and classical transfer learning by a large margin, both when translating models within the same dataset, as well as translating models across datasets with different MRI scanners, acquisition protocols and demographics. For example, when translating a UK Biobank model to 100 HCP-YA participants, meta-matching finetune yielded a 136% improvement in variance explained over transfer learning, with an average absolute gain of 2.6% (minimum = -0.9%, maximum = 17.6%) across 35 phenotypes. Overall, our results highlight the versatility of the meta-matching framework.

9.
bioRxiv ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38293022

ABSTRACT

Pooling MRI data from multiple datasets requires harmonization to reduce undesired inter-site variabilities, while preserving effects of biological variables (or covariates). The popular harmonization approach ComBat uses a mixed effect regression framework that explicitly accounts for covariate distribution differences across datasets. There is also significant interest in developing harmonization approaches based on deep neural networks (DNNs), such as conditional variational autoencoder (cVAE). However, current DNN approaches do not explicitly account for covariate distribution differences across datasets. Here, we provide mathematical results, suggesting that not accounting for covariates can lead to suboptimal harmonization outcomes. We propose two DNN-based harmonization approaches that explicitly account for covariate distribution differences across datasets: covariate VAE (coVAE) and DeepResBat. The coVAE approach is a natural extension of cVAE by concatenating covariates and site information with site- and covariate-invariant latent representations. DeepResBat adopts a residual framework inspired by ComBat. DeepResBat first removes the effects of covariates with nonlinear regression trees, followed by eliminating site differences with cVAE. Finally, covariate effects are added back to the harmonized residuals. Using three datasets from three different continents with a total of 2787 participants and 10085 anatomical T1 scans, we find that DeepResBat and coVAE outperformed ComBat, CovBat and cVAE in terms of removing dataset differences, while enhancing biological effects of interest. However, coVAE hallucinates spurious associations between anatomical MRI and covariates even when no association exists. Therefore, future studies proposing DNN-based harmonization approaches should be aware of this false positive pitfall. Overall, our results suggest that DeepResBat is an effective deep learning alternative to ComBat.

10.
Plant J ; 117(1): 92-106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37738394

ABSTRACT

Root hairs are crucial in the uptake of essential nutrients and water in plants. This study showed that a zinc finger protein, GIS3 is involved in root hair growth in Arabidopsis. The loss-of-function gis3 and GIS3 RNAi transgenic line exhibited a significant reduction in root hairs compared to the wild type. The application of 1-aminocyclopropane-1-carboxylic acid (ACC), an exogenous ethylene precursor, and 6-benzyl amino purine (BA), a synthetic cytokinin, significantly restored the percentage of hair cells in the epidermis in gis3 and induced GIS3 expression in the wild type. More importantly, molecular and genetic studies revealed that GIS3 acts upstream of ROOT HAIR DEFECTIVE 2 (RHD2) and RHD4 by binding to their promoters. Furthermore, exogenous ACC and BA application significantly induced the expression of RHD2 and RHD4, while root hair phenotype of rhd2-1, rhd4-1, and rhd4-3 was insensitive to ACC and BA treatment. We can therefore conclude that GIS3 modulates root hair development by directly regulating RHD2 and RHD4 expression through ethylene and cytokinin signals in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Inflorescence/metabolism , Ethylenes/metabolism , Cytokinins/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant , Mutation
11.
bioRxiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106085

ABSTRACT

Resting-state functional connectivity (RSFC) is widely used to predict phenotypic traits in individuals. Large sample sizes can significantly improve prediction accuracies. However, for studies of certain clinical populations or focused neuroscience inquiries, small-scale datasets often remain a necessity. We have previously proposed a "meta-matching" approach to translate prediction models from large datasets to predict new phenotypes in small datasets. We demonstrated large improvement of meta-matching over classical kernel ridge regression (KRR) when translating models from a single source dataset (UK Biobank) to the Human Connectome Project Young Adults (HCP-YA) dataset. In the current study, we propose two meta-matching variants ("meta-matching with dataset stacking" and "multilayer meta-matching") to translate models from multiple source datasets across disparate sample sizes to predict new phenotypes in small target datasets. We evaluate both approaches by translating models trained from five source datasets (with sample sizes ranging from 862 participants to 36,834 participants) to predict phenotypes in the HCP-YA and HCP-Aging datasets. We find that multilayer meta-matching modestly outperforms meta-matching with dataset stacking. Both meta-matching variants perform better than the original "meta-matching with stacking" approach trained only on the UK Biobank. All meta-matching variants outperform classical KRR and transfer learning by a large margin. In fact, KRR is better than classical transfer learning when less than 50 participants are available for finetuning, suggesting the difficulty of classical transfer learning in the very small sample regime. The multilayer meta-matching model is publicly available at GITHUB_LINK.

13.
Front Bioeng Biotechnol ; 11: 1218478, 2023.
Article in English | MEDLINE | ID: mdl-37476480

ABSTRACT

Background and objective: Treatment of Kümmel's Disease (KD) with pure percutaneous kyphoplasty carries a greater likelihood of bone cement displacement due to hardened bone and defect of the peripheral cortex. In this study, we designed a novel minimally invasive pedicle bone cement screw and evaluate the effectiveness and safety of this modified surgical instruments in porcine vertebrae. Methods: 18 mature porcine spine specimens were obtained and soaked in 10% formaldehyde solution for 24 h. 0.5000 mmol/L EDTA-Na2 solution was used to develop in vitro osteoporosis models of porcine vertebrae. They were all made with the bone deficiency at the anterior edge of L1. These specimens were randomly divided into 3 groups for different ways of treatment: Group A: pure percutaneous kyphoplasty (PKP) group; Group B: unilateral novel minimally invasive pedicle bone cement screw fixation combined with PKP group; Group C: bilateral novel minimally invasive pedicle bone cement screw fixation combined with PKP group. The MTS multi-degree of freedom simulation test system was used for biomechanical tests, including axial loading of 500 N pressure, range of motion (ROM) in flexion, extension, left/right lateral bending, and left/right axial rotation at 5 Nm, and the displacement of bone cement mass at maximum angles of 5° and 10°. Result: The three groups were well filled with bone cement, no leakage or displacement of bone cement was observed, and the height of the vertebrae was higher than pre-operation (p < 0.05). In the left/right axial rotation, the specimens were still significantly different (p < 0.05) from the intact specimens in terms of ROM after PKP. In other directions, ROM of all group had no significant difference (p < 0.05) and was close to the intact vertebrae. Compared with PKP group, the relative displacement of bone cement in groups B and C was smaller (p < 0.05). Conclusion: In the in vitro animal vertebral models, the treatment of KD with the placement of novel pedicle minimally invasive bone cement screw combined with PKP can effectively restore the vertebral height, improve the stability of the affected vertebra and prevent the displacement of bone cement. Biomechanically, there is no significant difference between bilateral and unilateral fixation.

14.
Plant J ; 116(3): 756-772, 2023 11.
Article in English | MEDLINE | ID: mdl-37516999

ABSTRACT

Cell differentiation and morphogenesis are crucial for the establishment of diverse cell types and organs in multicellular organisms. Trichome cells offer an excellent paradigm for dissecting the regulatory mechanisms of plant cell differentiation and morphogenesis due to their unique growth characteristics. Here, we report the isolation of an Arabidopsis mutant, aberrantly branched trichome 3-1 (abt3-1), with a reduced trichome branching phenotype. Positional cloning and molecular complementation experiments confirmed that abt3-1 is a new mutant allele of Auxin resistant 1 (AXR1), which encodes the N-terminal half of ubiquitin-activating enzyme E1 and functions in auxin signaling pathway. Meanwhile, we found that transgenic plants expressing constitutively active version of ROP2 (CA-ROP2) caused a reduction of trichome branches, resembling that of abt3-1. ROP2 is a member of Rho GTPase of plants (ROP) family, serving as versatile signaling switches involved in a range of cellular and developmental processes. Our genetic and biochemical analyses showed AXR1 genetically interacted with ROP2 and mediated ROP2 protein stability. The loss of AXR1 aggravated the trichome defects of CA-ROP2 and induced the accumulation of steady-state ROP2. Consistently, elevated AXR1 expression levels suppressed ROP2 expression and partially rescued trichome branching defects in CA-ROP2 plants. Together, our results presented a new mutant allele of AXR1, uncovered the effects of AXR1 and ROP2 during trichome development, and revealed a pathway of ROP2-mediated regulation of plant cell morphogenesis in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Trichomes/genetics , Trichomes/metabolism , Indoleacetic Acids , Alleles , Cell Differentiation , Morphogenesis/genetics , Plants, Genetically Modified/genetics , Mutation , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism
15.
Cancer Cell Int ; 23(1): 144, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37480012

ABSTRACT

PURPOSE: Myelin and lymphocyte protein 2 (MAL2) is mainly involved in endocytosis under physiological conditions and mediates the transport of materials across the membranes of cell and organelle. It has been reported that MAL2 is significantly upregulated in diverse cancers. This study aimed to investigate the role of MAL2 in breast cancer (BC). METHODS: Bioinformatics analysis and Immunohistochemical assay were applied to detect the correlation between MAL2 expression in breast cancer tissues and the prognosis of breast cancer patients. Functional experiments were carried out to investigate the role of MAL2 in vitro and in vivo. The molecular mechanisms involved in MAL2-induced ß-catenin and c-Myc expression and ß-catenin/c-Myc-mediated enhancement of BC progression were confirmed by western blot, ß-catenin inhibitor and agonist, Co-IP and immunofluorescence colocalization assays. RESULTS: Results from the cancer genome atlas (TCGA) and clinical samples confirmed a significant upregulation of MAL2 in BC tissues than in adjacent non-tumor tissues. High expression of MAL2 was associated with worse prognosis. Functional experiments demonstrated that MAL2 knockdown reduced the migration and invasion associating with EMT, increased the apoptosis of BC cells in vitro and reduced the metastatic capacity in vivo. Mechanistically, MAL2 interacts with ß-catenin in BC cells. MAL2 silencing reduced the expression of ß-catenin and c-Myc, while the ß-catenin agonist SKL2001 partially rescued the downregulation of c-Myc and inhibition of migration and invasion caused by MAL2 knockdown in BC cells. CONCLUSION: These observations provided evidence that MAL2 acted as a potential tumor promoter by regulating EMT and ß-catenin/c-Myc axis, suggesting potential implications for anti-metastatic therapy for BC.

16.
Neuroimage ; 273: 120010, 2023 06.
Article in English | MEDLINE | ID: mdl-36918136

ABSTRACT

Resting-state fMRI is commonly used to derive brain parcellations, which are widely used for dimensionality reduction and interpreting human neuroscience studies. We previously developed a model that integrates local and global approaches for estimating areal-level cortical parcellations. The resulting local-global parcellations are often referred to as the Schaefer parcellations. However, the lack of homotopic correspondence between left and right Schaefer parcels has limited their use for brain lateralization studies. Here, we extend our previous model to derive homotopic areal-level parcellations. Using resting-fMRI and task-fMRI across diverse scanners, acquisition protocols, preprocessing and demographics, we show that the resulting homotopic parcellations are as homogeneous as the Schaefer parcellations, while being more homogeneous than five publicly available parcellations. Furthermore, weaker correlations between homotopic parcels are associated with greater lateralization in resting network organization, as well as lateralization in language and motor task activation. Finally, the homotopic parcellations agree with the boundaries of a number of cortical areas estimated from histology and visuotopic fMRI, while capturing sub-areal (e.g., somatotopic and visuotopic) features. Overall, these results suggest that the homotopic local-global parcellations represent neurobiologically meaningful subdivisions of the human cerebral cortex and will be a useful resource for future studies. Multi-resolution parcellations estimated from 1479 participants are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Yan2023_homotopic).


Subject(s)
Brain Mapping , Brain , Humans , Brain/physiology , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Rest
17.
Int J Biol Macromol ; 224: 621-633, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36273546

ABSTRACT

Extensive lead (Pb) accumulation in plants exerts toxic effects on plant growth and development and enters the human food chain. Combining linkage mapping, transcriptome analysis, and association studies, we cloned the ZmbZIP54 transcription factor, which confers maize tolerance to Pb. Combined overexpression and knockdown confirmed that ZmbZIP54 mitigates Pb toxicity in maize by alleviating Pb absorption into the roots. Yeast one-hybrid and dual-luciferase assays revealed that ZmbZIP54 binds to the ZmPRP1 promoter and promotes its transcription. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated that ZmFdx5 interacts with ZmbZIP54 in the nucleus. ZmFdx5 acts as a switch that controls the regulation of ZmPRP1 expression by ZmbZIP54 when maize encounters Pb stress. Furthermore, we revealed that variation in the 5'-UTR of ZmbZIP54 affects its expression level under Pb stress and contributes to the difference in Pb tolerance among maize lines. Finally, we proposed a model to summarize the role of ZmbZIP54 in Pb tolerance, which involves the cooperative effect of ZmbZIP54 and ZmFdx5 on the ZmPRP1 transcription in maize response to Pb. This study provides novel insights into the development of Pb-tolerant maize varieties and bioremediation of Pb-contaminated soils.


Subject(s)
Lead , Seedlings , Transcription Factors , Zea mays , Humans , Gene Expression Regulation, Plant , Lead/metabolism , Lead/toxicity , Plant Roots , Seedlings/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Two-Hybrid System Techniques
18.
Phytochemistry ; 205: 113502, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36356672

ABSTRACT

Four undescribed highly oxidized and rearranged limonoids, secotrijugins A-D, were purified from the leaves and twigs of Trichilia sinensis. Within them, secotrijugin A was characterized as a rare 30-nortrijugin-type limonoid with an unusual cleavage of 1,14-ether bond, secotrijugins B and C represented new examples with the cleavage of δ-lactone ring D, and secotrijugin D was a rare trijugin-type limonoid with an unusual 2,6-oxygen bridge. The structures of limonoids were characterized by means of spectroscopic analysis and ECD calculations. The cellular screening revealed that secotrijugin B was the most active against LPS-stimulated NO production in BV-2 cells, which played an anti-inflammatory role by downregulating COX-2 and iNOS protein expression. The further in vivo experiments confirmed that secotrijugin B had strong in vivo anti-inflammatory effect via suppressing NO and ROS generation.


Subject(s)
Limonins , Meliaceae , Limonins/pharmacology , Anti-Inflammatory Agents/pharmacology
19.
J Biol Chem ; 298(10): 102489, 2022 10.
Article in English | MEDLINE | ID: mdl-36113581

ABSTRACT

The establishment of photosynthetic protein complexes during chloroplast development requires the influx of a large number of chloroplast proteins that are encoded by the nuclear genome, which is critical for cytosol and chloroplast protein homeostasis and chloroplast development. However, the mechanisms regulating this process are still not well understood in higher plants. Here, we report the isolation and characterization of the pale green Arabidopsis pga1-1 mutant, which is defective in chloroplast development and chloroplast protein accumulation. Using genetic and biochemical evidence, we reveal that PGA1 encodes AtFtsH12, a chloroplast envelope-localized protein of the FtsH family proteins. We determined a G703R mutation in the GAD motif of the conserved ATPase domain renders the pga1-1 a viable hypomorphic allele of the essential gene AtFtsH12. In de-etiolation assays, we showed that the accumulation of photosynthetic proteins and the expression of photosynthetic genes were impaired in pga1-1. Using the FNRctp-GFP and pTAC2-GFP reporters, we demonstrated that AtFtsH12 was required for the accumulation of chloroplast proteins in vivo. Interestingly, we identified an increase in expression of the mutant AtFtsH12 gene in pga1-1, suggesting a feedback regulation. Moreover, we found that cytosolic and chloroplast proteostasis responses were triggered in pga1-1. Together, taking advantage of the novel pga1-1 mutant, we demonstrate the function of AtFtsH12 in chloroplast protein homeostasis and chloroplast development.


Subject(s)
Adenosine Triphosphatases , Arabidopsis Proteins , Arabidopsis , Chloroplast Proteins , Proteostasis , Adenosine Triphosphatases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chloroplast Proteins/genetics , Chloroplast Proteins/metabolism , Chloroplasts/metabolism , Cytosol/metabolism , Gene Expression Regulation, Plant , Mutation , Proteostasis/genetics
20.
Neuroimage ; 263: 119570, 2022 11.
Article in English | MEDLINE | ID: mdl-35987490

ABSTRACT

There is significant interest in pooling magnetic resonance image (MRI) data from multiple datasets to enable mega-analysis. Harmonization is typically performed to reduce heterogeneity when pooling MRI data across datasets. Most MRI harmonization algorithms do not explicitly consider downstream application performance during harmonization. However, the choice of downstream application might influence what might be considered as study-specific confounds. Therefore, ignoring downstream applications during harmonization might potentially limit downstream performance. Here we propose a goal-specific harmonization framework that utilizes downstream application performance to regularize the harmonization procedure. Our framework can be integrated with a wide variety of harmonization models based on deep neural networks, such as the recently proposed conditional variational autoencoder (cVAE) harmonization model. Three datasets from three different continents with a total of 2787 participants and 10,085 anatomical T1 scans were used for evaluation. We found that cVAE removed more dataset differences than the widely used ComBat model, but at the expense of removing desirable biological information as measured by downstream prediction of mini mental state examination (MMSE) scores and clinical diagnoses. On the other hand, our goal-specific cVAE (gcVAE) was able to remove as much dataset differences as cVAE, while improving downstream cross-sectional prediction of MMSE scores and clinical diagnoses.


Subject(s)
Goals , Magnetic Resonance Imaging , Humans , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...