Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 60(47): 24888-24893, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34553823

ABSTRACT

Described herein is an imidazole ring formation strategy for the synthesis of axially chiral N-arylbenzimidazoles by means of chiral phosphoric acid catalysis. Two sets of conditions were developed to transform two classes of 2-naphthylamine derivatives into structurally diverse N-arylbenzimidazole atropisomers with excellent chemo- and regioselectivity as well as high levels of enantiocontrol. It is worth reflecting on the unique roles played by the nitroso group in this domino reaction. It functions as a linchpin by first offering an electrophilic site (N) for the initial C-N bond formation while the resulting amine performs the nucleophilic addition to form the second C-N bond. Additionally, it could facilitate the final oxidative aromatization as an oxidant. The atropisomeric products could be conveniently elaborated to a series of axially chiral derivatives, enabling the exploitation of N-arylbenzimidazoles for their potential utilities in asymmetric catalysis.

2.
Angew Chem Int Ed Engl ; 59(17): 6775-6779, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32017378

ABSTRACT

N-arylcarbazole structures are important because of their prevalence in natural products and functional OLED materials. C-H amination of arenes has been widely recognized as the most efficient approach to access these structures. Conventional strategies involving transition-metal catalysts suffer from confined substrate generality and the requirement of exogenous oxidants. Organocatalytic enantioselective C-N chiral axis construction remains elusive. Presented here is the first organocatalytic strategy for the synthesis of novel axially chiral N-arylcarbazole frameworks by the assembly of azonaphthalenes and carbazoles. This reaction accommodates broad substrate scope and gives atropisomeric N-arylcarbazoles in good yields with excellent enantiocontrol. This approach not only offers an alternative to metal-catalyzed C-N cross-coupling, but also brings about opportunities for the exploitation of structurally diverse N-aryl atropisomers and OLED materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...