Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1873): 20220017, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36744564

ABSTRACT

Evidence that climate change will impact the ecology and evolution of individual plant species is growing. However, little, as yet, is known about how climate change will affect interactions between plants and their pathogens. Climate drivers could affect the physiology, and thus demography, and ultimately evolutionary processes affecting both plant hosts and their pathogens. Because the impacts of climate drivers may operate in different directions at different scales of infection, and, furthermore, may be nonlinear, abstracting across these processes may mis-specify outcomes. Here, we use mechanistic models of plant-pathogen interactions to illustrate how counterintuitive outcomes are possible, and we introduce how such framing may contribute to understanding climate effects on plant-pathogen systems. We discuss the evidence-base derived from wild and agricultural plant-pathogen systems that could inform such models, specifically in the direction of estimates of physiological, demographic and evolutionary responses to climate change. We conclude by providing an overview of knowledge gaps and directions for future research in this important area. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.


Subject(s)
Climate Change , Plants
2.
Ecology ; 103(7): e3689, 2022 07.
Article in English | MEDLINE | ID: mdl-35324006

ABSTRACT

Fire is an important ecological disturbance that can reset ecosystems and initiate changes in plant community composition, ecosystem biogeochemistry, and primary productivity. As herbivores rely on primary producers for food, changes in vegetation may alter plant-herbivore interactions with important-but often unexplored-feedbacks to ecosystems. Here we examined the impact of post-fire changes in plant community composition and structure on habitat suitability and rodent herbivore activity in response to a large, severe, and unprecedented fire in northern Alaskan tundra. In moist acidic tundra where the fire occurred, tundra voles (Microtus oeconomus) are the dominant herbivore and rely on the tussock forming sedge Eriophorum vaginatum for both food and nesting material. Tundra voles were 10 times more abundant at the burned site compared with nearby unburned tundra 7-12 years after the fire. Fire increased the habitat suitability for voles by increasing plant productivity and biomass, food quality, and cover through both taller vegetation and increased microtopography. As a result of elevated vole abundance, Eriophorum mortality caused by vole herbivory was two orders of magnitude higher than natural mortality and approached the magnitude of the mortality rate resulting directly from the fire. These findings suggest that post-fire increases in herbivore pressure on Eriophorum could, in turn, disrupt graminoid recovery and enhance shrub encroachment. Tundra state transitions from graminoid to shrub dominated are also evident following other disturbances and fertilization experiments, suggesting that as Arctic temperatures rise, greater available nutrients and increased frequencies of large-scale disturbances may also alter plant-animal interactions with cascading impacts on plant communities and ecosystem function.


Subject(s)
Ecosystem , Herbivory , Animals , Arctic Regions , Arvicolinae , Plants , Tundra
SELECTION OF CITATIONS
SEARCH DETAIL
...