Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(2): 3274-3283, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35045603

ABSTRACT

We report the fabrication of photocross-linkable and surface-functionalizable polymeric thin films using reactive cyclic dithiocarbonate (DTC)-containing copolymers. The chemical functionalities of these material surfaces were precisely defined with light illumination. The DTC copolymers, namely, poly(dithiocarbonate methylene methacrylate-random-alkyl methacrylate)s, were synthesized via reversible addition-fragmentation chain transfer polymerization, and the reaction kinetics was thoroughly analyzed. The copolymers were cross-linked into a coating using a bifunctional urethane cross-linker that contains a photolabile o-nitrobenzyl group and releases aniline upon exposure to light. The nucleophilic attack of the aromatic amine opens the DTC group, forming a carbamothioate bond and generating a reactive thiol group in the process. The surface concentrations of the unreacted DTC and thiol were effectively controlled by varying the amounts of the copolymer and the cross-linker. The use of methacrylate comonomers led to additional reactive surface functionality such as carboxylic acid via acid hydrolysis. The successful transformations of the resulting DTC, thiol, and carboxylic acid groups to different functionalities via sequential nucleophilic ring opening, thiol-ene, and carbodiimide coupling reactions under ambient conditions were confirmed quantitatively using X-ray photoelectron spectroscopy. The presented chemistries were readily adapted to the immobilization of complex molecules such as a fluorophore and a protein in lithographically defined regions, highlighting their potential in creating organic coatings that can have multiple functional groups under ambient conditions.

2.
Small ; 17(11): e2006737, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33619846

ABSTRACT

Metal halide perovskites (MHPs) exhibit optoelectronic properties that are dependent on their ionic composition, and the feasible exploitation of these properties for device applications requires the ability to control the ionic composition integrated with the patterning process. Herein, the halide exchange process of MHP thin films directly combined with the patterning process via a vapor transport method is demonstrated. Specifically, the patterned arrays of CH3 NH3 PbBr3 (MAPbBr3 ) are obtained by stepwise conversion from polymer-templated PbI2 thin films to CH3 NH3 PbI3 (MAPbI3 ), followed by halide exchange via precursor switching from CH3 NH3 I to CH3 NH3 Br. It is confirmed that the phase transformation from MAPbI3 patterns to MAPbBr3 shows time- and position-dependences on the substrate during halide exchange following the solid-solution model with Avrami kinetics. The photodetectors fabricated from the completely exchanged MAPbBr3 patterns display exceptional air stability and reversible detectivity from "apparent death" upon removing the adsorbed impurities, thereby suggesting the superior structural stability of perovskite patterns prepared through vapor-phase halide exchange. The results demonstrate the potential of chemical vapor deposition patterning of MHP materials in multicomponent optoelectronic device systems.

3.
Langmuir ; 36(12): 3046-3056, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32151131

ABSTRACT

The tunable surface-wetting properties of photosensitive random copolymer mats were used to spatially control the orientations of thin-film block copolymer (BCP) structures. A photosensitive mat was produced via thermal treatment on spin-coated random copolymers of poly(styrene-ran-2-nitrobenzyl methacrylate-ran-glycidyl methacrylate), synthesized via reversible-deactivation radical polymerization. The degree of UV-induced deprotection of the nitrobenzyl esters in the mat was precisely controlled through the amount of UV-irradiation energy imparted to the mat. The resulting polarity switching of the constituents collectively altered the interfacial wetting properties of the mat, and the tunability allowed lamellar or cylinder-forming poly(styrene-b-methyl methacrylate) BCP thin films, applied over the mat, to change the domain orientation from perpendicular to parallel at proper UV exposures. UV irradiation passing through a photomask was capable of generating defined regions of BCP domains with targeted orientations.

4.
Carbohydr Polym ; 234: 115881, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32070504

ABSTRACT

This work reports the fabrication of a thiol-functionalized cellulose nanofiber membrane that can effectively adsorb heavy metal ions. Thiol was incorporated onto the surface of cellulose nanofibers, which were fabricated by the deacetylation of electrospun cellulose acetate nanofibers and subsequent esterification of a thiol precursor molecule. Adsorption mechanism was investigated using adsorption isotherms. Adsorption capacity as a function of adsorbate concentration was described well with Langmuir isotherm, suggesting that metal ions form a surface monolayer with a homogenously distributed adsorption energy. Maximum adsorption capacities in the Langmuir isotherm for Cu(II), Cd(II), and Pb(II) ions were 49.0, 45.9, and 22.0 mg·g-1, respectively. The time-dependent adsorption capacities followed a pseudo-second-order kinetic model, suggesting that chemisorption of each doubly charged metal ion occurs with two thiol groups on the surface. These results highlight the significance of surface functionality on biocompatible, nontoxic, and sustainable cellulose materials to expand their potential and applicability towards water remediation applications.

5.
Carbohydr Polym ; 226: 115259, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31582070

ABSTRACT

We demonstrate effective functionalization chemistry for cellulose nanofiber modification using thiol functionality. Electrospun cellulose acetate nanofibers were deacetylated to obtain cellulose nanofibers, which were modified further to incorporate thiol on their surface by the esterification of hydroxyl groups with 3,3'-dithiodipropionic acid and further reductive cleavage of the disulfide bond. The thiol functionality was highly versatile to bring simple and efficient chemical reactions to attain (i) Ag nanoparticle-adsorbed cellulose nanofibers by Ag ion reduction at surface, (ii) various amine (primary amine and quaternary amine) functionalized cellulose nanofibers by Michael addition, and (iii) complex polymer functionalized cellulose nanofibers by a radical-based thiol-ene reaction, under mild conditions, i.e. in any reaction media, at room temperature, and under ambient atmosphere, evidenced by a variety of characterization methods including a quantitative analysis with X-ray photoemission spectroscopy. These scalable thiol-based chemistries should offer a new generation of well-tailored cellulose nanofiber materials with complex inorganic, organic, and polymeric functionalities, potentially expanding to functionalized surfaces of other carbohydrate-based materials to achieve the desired properties.

6.
Sci Rep ; 8(1): 15725, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30356115

ABSTRACT

Electrospraying is an effective and facile technique for the production of micro- or nanoparticles with tailored sizes, shapes, morphologies, and microstructures. We synthesized functionalizable poly(styrene-random-glycidyl methacrylate) copolymers and used them to fabricate microparticles via the electrospray technique. The sizes and morphologies of the electrosprayed particles are controlled by altering the process parameters (feed rate and applied voltage), and the composition and thermodynamic properties of the polymer (i.e., compatibility of the polymer with the solvent). We further investigated modifying the surfaces of the electrosprayed particles with 3-mercaptopropionic acid by a simple and efficient thiol-epoxy "click" reaction as a proof-of-concept demonstration that desired functionality can be introduced onto the surfaces of these particles; the outcome was confirmed by various spectroscopic techniques. In addition, the epoxides within the particles easily undergo crosslinking reactions, enabling further effective particle stabilization. The results reveal that the structure and properties of the polymer can be used to fine-tune the structural parameters of the electrosprayed particles, such as their sizes and morphologies, which opens up the possibility of imparting a variety of desired chemical functionalities into the structures of stable organic materials via post-electrospray modification processes.

7.
RSC Adv ; 8(43): 24166-24174, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-35539156

ABSTRACT

We demonstrate the synthesis of poly(methyl methacrylate) (PMMA) and poly(styrene-b-methyl methacrylate) (P(S-b-MMA)) brushes on crosslinked random copolymer thin films, compositionally varied poly(styrene-r-glycidyl methacrylate) (P(S-r-GMA)), which can be further functionalized with a molecule featuring an initiator group upon crosslinking to form highly stable thin films. With careful optimizations, PMMA brushes were successfully grown from the surfaces of initiator functionalized P(S-r-GMA) via surface-initiated atom transfer radical polymerization. The grafting densities of the PMMA and P(S-b-MMA) brushes were effectively controlled to be in different density regimes by controlling the composition of P(S-r-GMA) and post-crosslinking functionalization methods. Synthesized BCP brushes were stable upon repetitive washing and thermal annealing processes even at high grafting density, highlighting that the outstanding stability of crosslinked P(S-r-GMA) thin films enables close examination of the morphology of thermally annealed P(S-b-MMA) brushes in different grafting density regimes.

SELECTION OF CITATIONS
SEARCH DETAIL
...