Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 20(5): 1677-1692, 2018 05.
Article in English | MEDLINE | ID: mdl-29473278

ABSTRACT

Bacterial floc formation plays a central role in the activated sludge (AS) process, which has been widely utilized for sewage and wastewater treatment. The formation of AS flocs has long been known to require exopolysaccharide biosynthesis. This study demonstrates an additional requirement for a PEP-CTERM protein in Zoogloea resiniphila, a dominant AS bacterium harboring a large exopolysaccharide biosynthesis gene cluster. Two members of a wide-spread family of high copy number-per-genome PEP-CTERM genes, transcriptionally regulated by the RpoN sigma factor and accessory PrsK-PrsR two-component system and at least one of these, pepA, must be expressed for Zoogloea to build the floc structures that allow gravitational sludge settling and recycling. Without PrsK or PrsR, Zoogloea cells were planktonic rather than flocculated and secreted exopolysaccharides were released into the growth broth in soluble form. Overexpression of PepA could circumvent the requirement of rpoN, prsK and prsR for the floc-forming phenotype by fixing the exopolysaccharides to bacterial cells. However, overexpression of PepA, which underwent post-translational modifications, could not rescue the long-rod morphology of the rpoN mutant. Consistently, PEP-CTERM genes and exopolysaccharide biosynthesis gene cluster are present in the genome of the floc-forming Nitrospira comammox and Mitsuaria strain as well as many other AS bacteria.


Subject(s)
Sewage/microbiology , Wastewater/microbiology , Zoogloea/physiology , Bacterial Proteins/metabolism , Flocculation , Sigma Factor/metabolism , Waste Disposal, Fluid , Wastewater/chemistry
2.
Water Res ; 102: 494-504, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27403872

ABSTRACT

Activated sludge (AS) process has been widely utilized for municipal sewage and industrial wastewater treatment. Zoolgoea and its related floc-forming bacteria are required for formation of AS flocs which is the key to gravitational effluent-and-sludge separation and AS recycling. However, little is known about the genetics, biochemistry and physiology of Zoogloea and its related bacteria. This report deals with the comparative genomic analyses on two Zoogloea resiniphila draft genomes and the closely related proteobacterial species commonly found in AS. In particular, the metabolic processes involved in removal of organic matters, nitrogen and phosphorus were analyzed. Furthermore, it is revealed that a large gene cluster, encoding eight glycosyltransferases and other proteins involved in biosynthesis and export of extracellular polysaccharides (EPS), was required for floc formation. One of the two asparagine synthase paralogues, associated with this EPS biosynthesis gene cluster, was required for floc formation in Zoogloea. Similar EPS biosynthesis gene cluster(s) were identified in the genome of other AS proteobacteria including polyphosphate-accumulating Candidatus Accumulibacter phosphatis (CAP) and nitrifying Nitrosopira and Nitrosomonas bacteria, but the gene composition varies interspecifically and intraspecifically. Our results indicate that floc formation of desired AS bacteria, including CAP strains, facilitate their recruitment into AS and gradual enrichment via repeated AS settling and recycling processes.


Subject(s)
Sewage/chemistry , Zoogloea , Bacteria , Flocculation , Genomics , Waste Disposal, Fluid
3.
Appl Environ Microbiol ; 82(17): 5077-88, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27287322

ABSTRACT

UNLABELLED: Determining the function and regulation of paralogues is important in understanding microbial functional genomics and environmental adaptation. Heme homeostasis is crucial for the survival of environmental microorganisms. Most Shewanella species encode two paralogues of ferrochelatase, the terminal enzyme in the heme biosynthesis pathway. The function and transcriptional regulation of two ferrochelatase genes, hemH1 and hemH2, were investigated in Shewanella loihica PV-4. The disruption of hemH1 but not hemH2 resulted in a significant accumulation of extracellular protoporphyrin IX (PPIX), the precursor to heme, and decreased intracellular heme levels. hemH1 was constitutively expressed, and the expression of hemH2 increased when hemH1 was disrupted. The transcription of hemH1 was regulated by the housekeeping sigma factor RpoD and potentially regulated by OxyR, while hemH2 appeared to be regulated by the oxidative stress-associated sigma factor RpoE2. When an oxidative stress condition was mimicked by adding H2O2 to the medium or exposing the culture to light, PPIX accumulation was suppressed in the ΔhemH1 mutant. Consistently, transcriptome analysis indicated enhanced iron uptake and suppressed heme synthesis in the ΔhemH1 mutant. These data indicate that the two paralogues are functional in the heme synthesis pathway but regulated by environmental conditions, providing insights into the understanding of bacterial response to environmental stresses and a great potential to commercially produce porphyrin compounds. IMPORTANCE: Shewanella is capable of utilizing a variety of electron acceptors for anaerobic respiration because of the existence of multiple c-type cytochromes in which heme is an essential component. The cytochrome-mediated electron transfer across cellular membranes could potentially be used for biotechnological purposes, such as electricity generation in microbial fuel cells and dye decolorization. However, the mechanism underlying the regulation of biosynthesis of heme and cytochromes is poorly understood. Our study has demonstrated that two ferrochelatase genes involved in heme biosynthesis are differentially regulated in response to environmental stresses, including light and reactive oxygen species. This is an excellent example showing how bacteria have evolved to maintain cellular heme homeostasis. More interestingly, the high yields of extracellular protoporphyrin IX by the Shewanella loihica PV-4 mutants could be utilized for commercial production of this valuable chemical via bacterial fermentation.


Subject(s)
Bacterial Proteins/genetics , Ferrochelatase/genetics , Gene Expression Regulation, Enzymologic , Shewanella/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Ferrochelatase/chemistry , Ferrochelatase/metabolism , Gene Expression Regulation, Bacterial , Heme/metabolism , Iron/metabolism , Protoporphyrins/metabolism , Shewanella/genetics , Shewanella/physiology , Sigma Factor/genetics , Sigma Factor/metabolism , Stress, Physiological
4.
Arch Microbiol ; 198(9): 885-92, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27270273

ABSTRACT

For alginate production in Pseudomonas aeruginosa, the intramembrane protease AlgW must be activated to cleave the periplasmic domain of anti-sigma factor MucA for release of the sequestered ECF sigma factor AlgU. Previously, we reported that three tandem point mutations in the pilA gene, resulting in a truncated type IV pilin termed PilA(108) with a C-terminal motif of phenylalanine-threonine-phenylalanine (FTF), induced mucoidy in strain PAO579. In this study, we purified PilA(108) protein and synthesized a peptide 'SGAGDITFTF' corresponding to C-terminus of PilA(108) and found they both caused the degradation of MucA by AlgW. Interestingly, AlgW could also cleave PilA(108) between alanine(62) and glycine(63) residues. Overexpression of the recombinant FTF motif-bearing MucE protein, originally a small periplasmic polypeptide with the C-terminal motif WVF, could induce mucoid conversion in the PAO1 strain. In all, our results provided a model of activation of AlgW by another protein ending with proper motifs. Our data suggest that in addition to MucA cleavage, AlgW may cleave other substrates.


Subject(s)
Bacterial Proteins/metabolism , Fimbriae Proteins/metabolism , Gene Expression Regulation, Bacterial , Peptide Hydrolases/metabolism , Pseudomonas aeruginosa/metabolism , Repressor Proteins/metabolism , Bacterial Proteins/genetics , Fimbriae Proteins/genetics , Peptide Hydrolases/genetics , Pseudomonas aeruginosa/genetics , Repressor Proteins/genetics , Sigma Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...