Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Med ; 5(5): 401-413.e4, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38574739

ABSTRACT

BACKGROUND: The recently circulating Omicron variants BA.2.86 and JN.1 were identified with more than 30 amino acid changes on the spike protein compared to BA.2 or XBB.1.5. This study aimed to comprehensively assess the immune escape potential of BA.2.86, JN.1, EG.5, and EG.5.1. METHODS: We collected human and murine sera to evaluate serological neutralization activities. The participants received three doses of coronavirus disease 2019 (COVID-19) vaccines or a booster dose of the ZF2022-A vaccine (Delta-BA.5 receptor-binding domain [RBD]-heterodimer immunogen) or experienced a breakthrough infection (BTI). The ZF2202-A vaccine is under clinical trial study (ClinicalTrials.gov: NCT05850507). BALB/c mice were vaccinated with a panel of severe acute respiratory syndrome coronavirus 2 RBD-dimer proteins. The antibody evasion properties of these variants were analyzed with 41 representative human monoclonal antibodies targeting the eight RBD epitopes. FINDINGS: We found that BA.2.86 had less neutralization evasion than EG.5 and EG.5.1 in humans. The ZF2202-A booster induced significantly higher neutralizing titers than BTI. Furthermore, BA.2.86 and JN.1 exhibited stronger antibody evasion than EG.5 and EG.5.1 on RBD-4 and RBD-5 epitopes. Compared to BA.2.86, JN.1 further lost the ability to bind to several RBD-1 monoclonal antibodies and displayed further immune escape. CONCLUSIONS: Our data showed that the currently dominating sub-variant, JN.1, showed increased immune evasion compared to BA.2.86 and EG.5.1, which is highly concerning. This study provides a timely risk assessment of the interested sub-variants and the basis for updating COVID-19 vaccines. FUNDING: This work was funded by the National Key R&D Program of China, the National Natural Science Foundation of China, the Beijing Life Science Academy, the Bill & Melinda Gates Foundation, and the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (CPSF).


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , COVID-19 Vaccines , COVID-19 , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Subunit , Humans , Animals , Antibodies, Monoclonal/immunology , SARS-CoV-2/immunology , Mice , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , COVID-19/prevention & control , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Betacoronavirus/immunology , Male , Immune Sera/immunology , Adult , Immune Evasion , Neutralization Tests , Epitopes/immunology
2.
ACS Nano ; 18(17): 11200-11216, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38620102

ABSTRACT

Intranasal vaccines, eliciting mucosal immune responses, can prevent early invasion, replication, and transmission of pathogens in the respiratory tract. However, the effective delivery of antigens through the nasal barrier and boosting of a robust systematic and mucosal immune remain challenges in intranasal vaccine development. Here, we describe an intranasally administered self-healing hydrogel vaccine with a reversible strain-dependent sol-gel transition by precisely modulating the self-assembly processes between the natural drug rhein and aluminum ions. The highly bioadhesive hydrogel vaccine enhances antigen stability and prolongs residence time in the nasal cavity and lungs by confining the antigen to the surface of the nasal mucosa, acting as a "mucosal mask". The hydrogel also stimulates superior immunoenhancing properties, including antigen internalization, cross-presentation, and dendritic cell maturation. Furthermore, the formulation recruits immunocytes to the nasal mucosa and nasal-associated lymphoid tissue (NALT) while enhancing antigen-specific humoral, cellular, and mucosal immune responses. Our findings present a promising strategy for preparing intranasal vaccines for infectious diseases or cancer.


Subject(s)
Administration, Intranasal , Hydrogels , Immunity, Mucosal , Nasal Mucosa , Animals , Hydrogels/chemistry , Mice , Immunity, Mucosal/drug effects , Nasal Mucosa/immunology , Mice, Inbred BALB C , Female , Humans , Mice, Inbred C57BL
3.
Food Chem ; 446: 138683, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38428081

ABSTRACT

A commercial high-resolution MS database "TCM-PCDL" was innovatively introduced to automatically identify multi-components in 73 edible flowers rapidly and accurately by liquid chromatography-high resolution mass spectrometry, which can be time-consuming and labor-intensive in traditional manual method. The database encompasses over 2565 natural products with various energy levels. Unknown compounds can be identified through direct matching and scoring MS2 spectra with database. A total of 870 compounds were identified from 73 flowers, with polyphenols constituting up to 75%. Focusing on polyphenols, a high performance liquid chromatography (HPLC) method was developed to generate fingerprints from 510 batches, establishing an "HPLC database" that enabled accurate authentication using similarity scores and rankings. This method demonstrated an accuracy rate of 100% when applied to 30 unknown samples. For flowers prone to confusion, additional statistical analysis methods could be employed as aids in authentication. This study provides valuable insights for large-scale sample chemical profiling and authentication.


Subject(s)
Plant Extracts , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Polyphenols , Flowers
4.
J Nat Prod ; 87(2): 252-265, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38294199

ABSTRACT

Eleven new steroidal alkaloids, along with nine known related compounds, were isolated from the bulbs of Fritillaria sinica. Seven pairs of diastereomers were identified, including six and four 20-deoxy cevanine-type steroidal alkaloid diastereomers with molecular weights of 413 and 415, respectively. Structures were elucidated based on spectroscopic data analysis, chemical derivatization, and single-crystal X-ray diffraction analysis. Compounds 5, 9, 11, 12, 16, and 20 exhibited significant in vitro cytotoxic activity against non-small-cell lung cancer with CC50 values from 6.8 ± 3.9 to 12 ± 5 µM.


Subject(s)
Alkaloids , Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Fritillaria , Lung Neoplasms , Humans , Fritillaria/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Molecular Structure , Lung Neoplasms/drug therapy , Alkaloids/chemistry , Steroids/chemistry
5.
Anal Bioanal Chem ; 416(2): 583-595, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38062195

ABSTRACT

Arnebiae Radix, commonly known as "Zicao," can be easily confused with other compounding species, posing challenges for its clinical use. Here, we developed a comprehensive strategy to systematically characterize the diverse components across Arnebiae Radix and its three confusing species. First, an offline two-dimensional liquid chromatography (2D-LC) system integrating hydrophilic interaction chromatography (HILIC) and reverse phase (RP) separations was established, enabling effective separation and detection of more trace constituents. Second, a polygonal mass defect filtering (MDF) workflow was implemented to screen target ions and generate a precursor ion list (PIL) to guide multistage mass (MSn) data acquisition. Third, a three-step characterization strategy utilizing diagnostic ions and neutral losses was developed for rapid determination of molecular formulas, structure classes, and compound identification. This approach enabled systematic characterization of Arnebiae Radix and its three confusing species, with 437 components characterized including 112 shikonins, 22 shikonfurans, 144 phenolic acids, 131 glycosides, 18 flavonoids, and 10 other compounds. Additionally, 361, 230, 340, and 328 components were identified from RZC, YZC, DZC, and ZZC, respectively, with 142 common components and 30 characteristic components that may serve as potential markers for distinguishing the four species. In summary, this is the first comprehensive characterization and comparison of the phytochemical profiles of Arnebiae Radix and its three confusing species, advancing our understanding of this herbal medicine for quality control.


Subject(s)
Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Liquid Chromatography-Mass Spectrometry , Flavonoids/analysis , Ions
6.
Phytomedicine ; 123: 155228, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006808

ABSTRACT

BACKGROUND: Fritillaria Bulbus (FB), a precious medicinal herb renowned for its heat-clearing, lung-moistening, cough-relieving and phlegm-eliminating effects. In pursuit of profits, unscrupulous merchants have engaged in the substitution or adulteration of valuable varieties with cheaper alternatives. It is, therefore, urgent to develop effective technical approaches to identify FBs from adulterants. METHODS: This paper employed infrared spectroscopy (IR), thin layer chromatography-image analysis (TLC-IA), and untargeted metabolomics techniques to discriminate ten species of FBs. RESULTS: Five species of FBs were successfully differentiated using mid-infrared spectroscopy. Furthermore, the power of TLC-IA technology allowed the differentiation of five species of FBs and two origins of FCBs (Fritillariae Cirrhosae Bulbus). Remarkably, through the application of untargeted metabolomics technique, the precise discrimination of five species of FBs, as well as three origins of FCBs were accomplished. Moreover, a comprehensive identification of 101 markers that reliably distinguished diverse FBs was achieved through the employment of untargeted metabolomics technique. CONCLUSION: The investigation presented powerful means of detection for assuring the quality control of Fritillaria herbs.


Subject(s)
Fritillaria , Plants, Medicinal , Fritillaria/chemistry , Chromatography, Thin Layer , Plants, Medicinal/chemistry , Quality Control , Spectrum Analysis , Metabolomics
7.
J Chromatogr A ; 1714: 464544, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38142618

ABSTRACT

Comprehensive and rapid analysis of secondary metabolites like saponins remains challenging. This study aimed to establish a semi-automated workflow for filtration, identification, and characterization of saikosaponins in six Bupleurum species. Radix Bupleuri, a high-sales herbal medicine, is often adulterated, restricting its quality control and applications. Two authentic Radix Bupleuri species and four major adulterants were analyzed through UHPLC-LTQ-Orbitrap-MS for targeted saikosaponin analysis. To reveal trace saikosaponins and obtain quality fragment data, a MATLAB-based process automatically enumerating "sugar chain + aglycone + side chain" combinations and deduplicating generated a predicted saikosaponin database covering all possible saikosaponins as a precursor ion list for comprehensive targeted acquisition. To focus on informative ions and reduce MS analysis workload, we utilized MATLAB to automatically filtrate the false positive ions by MS1 and MS2 spectrometry. The newly established MATLAB-assisted data acquisition approach exhibited 50 % improvement in characterization of targeted saikosaponins. Furthermore, positive and negative ionization workflows were designed for accurate saikosaponins characterization based on fragmentation rules. In total, 707 saikosaponins were characterized, including over 500 potential new compounds and previously unreported C29 aglycones. We identified 25 saikosaponins present in both authentic species but absent in adulterants as potential markers. This unprecedented comprehensive multi-origin species differentiation demonstrates the promise of MATLAB-assisted acquisition and processing to advance saponin identification and standardize the Radix Bupleuri market.


Subject(s)
Bupleurum , Drugs, Chinese Herbal , Oleanolic Acid , Saponins , Drugs, Chinese Herbal/chemistry , Bupleurum/chemistry , Plant Extracts , Saponins/analysis , Oleanolic Acid/analysis , Chromatography, Liquid , Mass Spectrometry , Ions , Chromatography, High Pressure Liquid/methods
8.
PLoS Pathog ; 19(9): e1011659, 2023 09.
Article in English | MEDLINE | ID: mdl-37721934

ABSTRACT

SARS-CoV-2 variants with severe immune evasion are a major challenge for COVID-19 prevention, especially the circulating Omicron XBB/BQ.1.1/BF.7 strains. Thus, the next-generation of broad-spectrum vaccines are urgently needed. Previously, we developed a COVID-19 protein subunit vaccine, ZF2001, based on the RBD-homodimer as the immunogen. To adapt SARS-CoV-2 variants, we developed chimeric RBD-heterodimers to induce broad immune responses. In this study, we further explored the concept of tandem RBD homotrimer and heterotrimer. Prototype SARS-CoV-2 RBD-homotrimer, prototype-Delta-BA.1 (PDO) RBD-heterotrimer and Delta-BA.2-BA.5 (DBA2BA5) RBD-heterotrimer were designed. Biochemical and cryo-EM structural characterization demonstrated total epitope exposure of the RBD-trimers. In mouse experiments, PDO and DBA2BA5 elicited broad SARS-CoV-2 neutralization. Potent protection against SARS-CoV-2 variants was observed in challenge assays and was correlated with neutralizing antibody titer. This study validated the design strategy of tandem RBD-heterotrimers as multivalent immunogens and presented a promising vaccine candidate, DBA2BA5, eliciting broad-spectrum immune responses, including against the circulating XBB/BF.7/BQ.1.1.


Subject(s)
COVID-19 , Vaccines , Animals , Mice , SARS-CoV-2/genetics , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral
10.
J Med Virol ; 95(7): e28948, 2023 07.
Article in English | MEDLINE | ID: mdl-37436839

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic posed great impacts on public health. To fight against the pandemic, robust immune responses induced by vaccination are indispensable. Previously, we developed a subunit vaccine adjuvanted by aluminum hydroxide, ZF2001, based on the dimeric tandem-repeat RBD immunogen, which has been approved for clinical use. This dimeric RBD design was also explored as an mRNA vaccine. Both showed potent immunogenicity. In this study, a DNA vaccine candidate encoding RBD-dimer was designed. The humoral and cellular immune responses induced by homologous and heterologous prime-boost approaches with DNA-RBD-dimer and ZF2001 were assessed in mice. Protection efficacy was studied by the SARS-CoV-2 challenge. We found that the DNA-RBD-dimer vaccine was robustly immunogenic. Priming with DNA-RBD-dimer followed by ZF2001 boosting induced higher levels of neutralizing antibodies than homologous vaccination with either DNA-RBD-dimer or ZF2001, elicited polyfunctional cellular immunity with a TH 1-biased polarization, and efficiently protected mice against SARS-CoV-2 infection in the lung. This study demonstrated the robust and protective immune responses induced by the DNA-RBD-dimer candidate and provided a heterologous prime-boost approach with DNA-RBD-dimer and ZF2001.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Humans , Animals , Mice , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Neutralizing , Immunity, Cellular , Antibodies, Viral
11.
Phytochemistry ; 213: 113768, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37343737

ABSTRACT

Eight undescribed steroidal alkaloid derivatives, including three cevanine-type isosteroidal alkaloids (two N-oxide glycosides and one D-ring aromatization) (1-3), one verazine-type steroidal alkaloid derivative (4), three solanidine-type steroidal alkaloid glycosides (5-7), and one veratramine-type analogue (8), along with three known compounds (9-11) were isolated from the bulbs of Fritillaria sinica. Their structures were elucidated by comprehensive analysis of spectroscopic data, acidic hydrolysis, and X-ray crystal diffractions. In the in vitro bioassay, the anti-cancer effect, anti-oxidation and anti-inflammatory activities for the isolates were evaluated at a concentration of 10 µM.


Subject(s)
Alkaloids , Fritillaria , Fritillaria/chemistry , Alkaloids/chemistry , Steroids/chemistry , Plant Roots/chemistry , Glycosides/analysis
12.
Signal Transduct Target Ther ; 8(1): 189, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37221173

ABSTRACT

Current attempts in vaccine delivery systems concentrate on replicating the natural dissemination of live pathogens, but neglect that pathogens evolve to evade the immune system rather than to provoke it. In the case of enveloped RNA viruses, it is the natural dissemination of nucleocapsid protein (NP, core antigen) and surface antigen that delays NP exposure to immune surveillance. Here, we report a multi-layered aluminum hydroxide-stabilized emulsion (MASE) to dictate the delivery sequence of the antigens. In this manner, the receptor-binding domain (RBD, surface antigen) of the spike protein was trapped inside the nanocavity, while NP was absorbed on the outside of the droplets, enabling the burst release of NP before RBD. Compared with the natural packaging strategy, the inside-out strategy induced potent type I interferon-mediated innate immune responses and triggered an immune-potentiated environment in advance, which subsequently boosted CD40+ DC activations and the engagement of the lymph nodes. In both H1N1 influenza and SARS-CoV-2 vaccines, rMASE significantly increased antigen-specific antibody secretion, memory T cell engagement, and Th1-biased immune response, which diminished viral loads after lethal challenge. By simply reversing the delivery sequence of the surface antigen and core antigen, the inside-out strategy may offer major implications for enhanced vaccinations against the enveloped RNA virus.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Humans , Antigens, Viral , COVID-19 Vaccines , SARS-CoV-2 , Vaccination , Antigens, Surface , Antibodies
13.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108402

ABSTRACT

Jujube fruit was well-loved and praised by the broad masses due to its delicious taste, abundant nutritional value, and medicinal properties. Few studies reported the quality evaluation and gut microbiota regulation effect of polysaccharides of jujube fruits from different producing areas. In the present study, multi-level fingerprint profiling, including polysaccharides, oligosaccharides, and monosaccharides, was established for the quality evaluation of polysaccharides from jujube fruits. For polysaccharides, the total content in jujube fruits ranged from 1.31% to 2.22%, and the molecular weight distribution (MWD) ranged from 1.14 × 105 to 1.73 × 106 Da. The MWD fingerprint profiling of polysaccharides from eight producing areas was similar, but the profile of infrared spectroscopy (IR) showed differentiation. The characteristic signals were screened and used to establish a discrimination model for the identification of jujube fruits from different areas, and the accuracy of identification reached 100.00%. For oligosaccharides, the main components were galacturonic acid polymers (DP, 2-4), and the profile of oligosaccharides exhibited high similarity. The monosaccharides, GalA, Glc, and Ara, were the primary monosaccharides. Although the fingerprint of monosaccharides was semblable, the composing proportion of monosaccharides revealed significant differences. In addition, the polysaccharides of jujube fruits could regulate the gut microbiota composition and possess potential therapeutic effects on dysentery and nervous system diseases.


Subject(s)
Gastrointestinal Microbiome , Ziziphus , Fruit/chemistry , Ziziphus/chemistry , Polysaccharides/chemistry , Monosaccharides
14.
Int J Biol Macromol ; 237: 123844, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36858091

ABSTRACT

Few studies reported the quality evaluation and gut microbiota regulation effect of polysaccharides from Fritillaria species. In this study, polysaccharides extracted from ten Fritillaria species were compared and distinguished through multi-levels evaluation strategy and data fusion. Furthermore, the gut microbiota regulation effect of polysaccharides among different species was analyzed and evaluated. The fingerprint profiling of IR, molecular weight distribution of polysaccharides, chromatogram of partially hydrolyzed polysaccharides (oligosaccharides) and completely hydrolyzed polysaccharides (monosaccharides) were similar, and no exclusive signals were observed. However, the signal strength of functional group, oligosaccharides abundance and monosaccharides proportion showed obvious differences in inter- and intra-species. Glucan may be the main component of polysaccharides in Fritillaria species, CIRR derived from CIR, PRZ, DEL, TAI, UNI possessed higher total polysaccharides content, polymerization degree, oligosaccharides abundance (DP 2-4), and glucose content than the others. Meanwhile, data fusion model was established for identification of affinis and multi-original species, the accuracy of which proved to be 100 %. In addition, Fritillaria polysaccharides could increase the bacterial community richness and diversity, regulate the gut microbiota composition and possessed potential therapeutic effects on gastrointestinal diseases and nervous system diseases.


Subject(s)
Fritillaria , Gastrointestinal Microbiome , Polysaccharides/pharmacology , Glucans/pharmacology , Monosaccharides/pharmacology
15.
Vaccine ; 41(17): 2793-2803, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36967286

ABSTRACT

Protein subunit vaccines have been widely used to combat infectious diseases, including the current COVID-19 pandemic. Adjuvants play the key role in shaping the quality and magnitude of the immune response to protein and inactivated vaccines. We previously developed a protein subunit COVID-19 vaccine, termed ZF2001, based on an aluminium hydroxide-adjuvanted tandem-repeat dimeric receptor-binding domain (RBD) of the viral spike (S) protein. Here, we described the use of a squalene-based oil-in-water adjuvant, Sepivac SWE™ (abbreviated to SWE), to further improve the immunogenicity of this RBD-dimer-based subunit vaccines. Compared with ZF2001, SWE adjuvant enhanced the antibody and CD4+ T-cell responses in mice with at least 10 fold of dose sparing compared with ZF2001 adjuvanted with aluminium hydroxide. SWE-adjuvanted vaccine protected mice against SARS-CoV-2 challenge. To ensure adequate protection against the currently circulating Omicron variant, we evaluated this adjuvant in combination with Delta-Omicron chimeric RBD-dimer. SWE significantly increased antibody responses compared with aluminium hydroxide adjuvant and afforded greater neutralization breadth. These data highlight the advantage of emulsion-based adjuvants to elevate the protective immune response of protein subunit COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines , Adjuvants, Vaccine , Protein Multimerization , Antibodies, Viral/immunology , SARS-CoV-2/genetics , Mutation , Mice, Inbred BALB C , Humans , Animals , Mice , Binding Sites , Cell Line
16.
Emerg Microbes Infect ; 12(1): e2179357, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36803449

ABSTRACT

The SARS-CoV-2 Omicron variants of concern (VOCs) showed severe resistance to the early-approved COVID-19 vaccines-induced immune responses. The breakthrough infections by the Omicron VOCs are currently the major challenge for pandemic control. Therefore, booster vaccination is crucial to enhance immune responses and protective efficacy. Previously, we developed a protein subunit COVID-19 vaccine ZF2001, based on the immunogen of receptor-binding domain (RBD) homodimer, which was approved in China and other countries. To adapt SARS-CoV-2 variants, we further developed chimeric Delta-Omicron BA.1 RBD-dimer immunogen which induced broad immune responses against SARS-CoV-2 variants. In this study, we tested the boosting effect of this chimeric RBD-dimer vaccine in mice after priming with two doses of inactivated vaccines, compared with a booster of inactivated vaccine or ZF2001. The results demonstrated that boosting with bivalent Delta-Omicron BA.1 vaccine greatly promoted the neutralizing activity of the sera to all tested SARS-CoV-2 variants. Therefore, the Delta-Omicron chimeric RBD-dimer vaccine is a feasible booster for those with prior vaccination of COVID-19 inactivated vaccines.


Subject(s)
COVID-19 , Carrier Proteins , Animals , Humans , Mice , COVID-19 Vaccines , SARS-CoV-2 , Protein Subunits , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral
17.
Crit Rev Anal Chem ; : 1-22, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36227577

ABSTRACT

Medicinal plants of Fritillaria are widely distributed in numerous countries around the world and possess excellent antitussive and expectorant effects. In particular, Fritillariae Bulbus (FB) as a precious traditional medicine has thousands of years of medical history in China. Herbs of Fritillaria have a high market value and demand while limited by harsh growing circumstances and scarce wild resources. As a consequence, fraudulent behaviors are regularly engaged by the unscrupulous merchants in an attempt to reap greater profits. It is of an urgent need to evaluate the quality of Fritillaria herbs and their products using various analytical instruments and techniques. This review has scrutinized approximately 160 articles from 1995 to 2022 published on the investigation of Fritillaria herbs and related herbal products. The botanical classification of genus Fritillaria, types of counterfeits, technologies applied for differentiating Fritillaria species were comprehensively summarized and discussed in the current review. Molecular and chromatographic identification were the dominant technologies in the authentication of Fritillaria herbs. Additionally, we brought some potential and promising technologies and analytical strategies into attention, which are worthy attempting in the future researches. This review could conduce to excellent reference value for further investigations of the authenticity assessment of Fritillaria species.

19.
Food Chem ; 393: 133346, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35671661

ABSTRACT

Despite Eucommia ulmoides to be served as a crucial source for food additives and healthcare products, unclarity of the metabolomic differences among four different plant parts (bark, leaf, flower, seed) seriously restricts the comprehensive quality control of the herb and its related commercial products. In this study, a strategy integrating in-depth profiling, nontargeted metabolomics, and selected detection was established and exemplarily applied to authenticate E. ulmoides related products. UPLC/Q-TOF Fast DDA approach was utilized for in-depth profiling among four parts to characterize 222 compounds. In addition, 38 batches of different parts of E. ulmoides were compared by metabolomics method, and multi-step chemometrics analysis to unveil 25 chemical markers. Finally, an UPLC/QDa-SIM method was established based 8 most important diagnosis components to identify 12 commercial products. This study provides a novel and comprehensive strategy for the quality assessment of foods and dietary supplements.


Subject(s)
Eucommiaceae , Biomarkers/analysis , Eucommiaceae/chemistry , Flowers , Metabolomics , Plant Leaves/chemistry
20.
Cell ; 185(13): 2265-2278.e14, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35568034

ABSTRACT

Breakthrough infections by SARS-CoV-2 variants become the global challenge for pandemic control. Previously, we developed the protein subunit vaccine ZF2001 based on the dimeric receptor-binding domain (RBD) of prototype SARS-CoV-2. Here, we developed a chimeric RBD-dimer vaccine approach to adapt SARS-CoV-2 variants. A prototype-Beta chimeric RBD-dimer was first designed to adapt the resistant Beta variant. Compared with its homotypic forms, the chimeric vaccine elicited broader sera neutralization of variants and conferred better protection in mice. The protection of the chimeric vaccine was further verified in macaques. This approach was generalized to develop Delta-Omicron chimeric RBD-dimer to adapt the currently prevalent variants. Again, the chimeric vaccine elicited broader sera neutralization of SARS-CoV-2 variants and conferred better protection against challenge by either Delta or Omicron SARS-CoV-2 in mice. The chimeric approach is applicable for rapid updating of immunogens, and our data supported the use of variant-adapted multivalent vaccine against circulating and emerging variants.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...