Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Food Chem Toxicol ; 172: 113592, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36587836

ABSTRACT

Ochratoxin A (OTA), a secondary fungal metabolite with nephrotoxicity, is widespread in numerous kinds of feeds and foodstuffs. Ursolic acid (UA), a water-insoluble pentacyclic triterpene acid, exists in a wide range of food materials and medicinal plants. Our earlier researches provided preliminary evidence that mitochondria- and mitochondria-associated endoplasmic reticulum membranes (MAMs)-located stress-responsive Lon protease 1 (Lonp1) had a protective function in OTA-induced nephrotoxicity, and the renoprotective function of UA against OTA partially due to Lonp1. However, whether other MAMs-located protiens, such as endoplasmic reticulum stress (ERS)-responsive Sigma 1-type opioid receptor (Sig-1R), contribute to the protection of UA against OTA-induced nephrotoxicity together with Lonp1 needs further investigation. In this study, the cell viability, reactive oxygen species, and protein expressions of human proximal tubule epithelial-originated kidney-2 (HK-2) cells varied with OTA and/or UA/CDDO-me/AVex-73/Sig-1R siRNA treatments were determined. Results indicated that a 24 h-treatment of 5 µM OTA could significantly induce mitochondrial-mediated apoptosis via repressing Lonp1 and Sig-1R, thereby enhancing the protein expressions of GRP78, p-PERK, p-eIF2α, CHOP, IRE1α, and Bax, and inhibiting the protein expression of Bcl-2 in HK-2 cells, which could be remarkably relieved by a 2 h-pre-treatment of 4 µM UA (P < 0.05). In conclusion, through mutual promotion between Lonp1 and Sig-1R, UA could effectively relieve OTA-induced apoptosis in vitro and break the vicious cycle between oxidative stress and ERS, which activated the mitochondrial apoptosis pathway.


Subject(s)
Protease La , Humans , Endoribonucleases , Protein Serine-Threonine Kinases , Mitochondria , Apoptosis , Endoplasmic Reticulum Stress , Mitochondrial Proteins , ATP-Dependent Proteases , Ursolic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...